Difference between revisions of "2004 AMC 12A Problems/Problem 23"
(→Solution) |
(LaTeX issue fixed) |
||
Line 16: | Line 16: | ||
*<math>\mathrm{(A)}</math>: We are given that <math>a_1 = b_1 = 0</math>, so <math>z_1 = 0</math>. If one of the roots is zero, then <math>P(0) = c_0 = 0</math>. | *<math>\mathrm{(A)}</math>: We are given that <math>a_1 = b_1 = 0</math>, so <math>z_1 = 0</math>. If one of the roots is zero, then <math>P(0) = c_0 = 0</math>. | ||
− | *<math>\mathrm{(B)}</math>: By [[Vieta's formulas]], we know that <math>\frac{c_{2003}}{c_{2004}</math> is the sum of all of the roots of <math>P(x)</math>. Since that is real, <math> \sum_{k = 1}^{2004}{b_k}=0=\sum_{k = 1}^{2004}{a_k}</math>, and <math>\frac{c_{2003}}{c_{2004}</math>, so <math>c_{2003}=0</math>. | + | *<math>\mathrm{(B)}</math>: By [[Vieta's formulas]], we know that <math>\frac{c_{2003}}{c_{2004}</math> is the sum of all of the roots of <math>P(x)</math>. Since that is real, <math> \sum_{k = 1}^{2004}{b_k}=0=\sum_{k = 1}^{2004}{a_k}</math>, and <math>\frac{c_{2003}}{c_{2004}}=0</math>, so <math>c_{2003}=0</math>. |
*<math>\mathrm{(C)}</math>: All of the coefficients are real. For sake of contradiction suppose none of <math>b_{2\ldots 2004}</math> are zero. Then for each complex root <math>z_i</math>, its [[complex conjugate]] <math>\overline{z_i} = a_i - b_ik</math> is also a root. So the roots should pair up, but we have an odd number of imaginary roots! This gives us the contradiction, and therefore the product is equal to zero. | *<math>\mathrm{(C)}</math>: All of the coefficients are real. For sake of contradiction suppose none of <math>b_{2\ldots 2004}</math> are zero. Then for each complex root <math>z_i</math>, its [[complex conjugate]] <math>\overline{z_i} = a_i - b_ik</math> is also a root. So the roots should pair up, but we have an odd number of imaginary roots! This gives us the contradiction, and therefore the product is equal to zero. | ||
*<math>\mathrm{(D)}</math>: We are given that <math>\sum_{k = 1}^{2004}{a_k} = \sum_{k = 1}^{2004}{b_k}</math>. Since the coefficients are real, it follows that if a root is complex, its conjugate is also a root; and the sum of the imaginary parts of complex conjugates is zero. Hence the RHS is zero. | *<math>\mathrm{(D)}</math>: We are given that <math>\sum_{k = 1}^{2004}{a_k} = \sum_{k = 1}^{2004}{b_k}</math>. Since the coefficients are real, it follows that if a root is complex, its conjugate is also a root; and the sum of the imaginary parts of complex conjugates is zero. Hence the RHS is zero. |
Revision as of 10:08, 4 December 2007
Problem
has real coefficients with and distinct complex zeroes , with and real, , and
Which of the following quantities can be a nonzero number?
Solution
We have to evaluate the answer choices and use process of elimination:
- : We are given that , so . If one of the roots is zero, then .
- : By Vieta's formulas, we know that $\frac{c_{2003}}{c_{2004}$ (Error compiling LaTeX. Unknown error_msg) is the sum of all of the roots of . Since that is real, , and , so .
- : All of the coefficients are real. For sake of contradiction suppose none of are zero. Then for each complex root , its complex conjugate is also a root. So the roots should pair up, but we have an odd number of imaginary roots! This gives us the contradiction, and therefore the product is equal to zero.
- : We are given that . Since the coefficients are real, it follows that if a root is complex, its conjugate is also a root; and the sum of the imaginary parts of complex conjugates is zero. Hence the RHS is zero.
There is, however, no reason to believe that should be zero (in fact, that quantity is , and there is no evidence that is a root of ).
See also
2004 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 22 |
Followed by Problem 24 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |