|
|
Line 1: |
Line 1: |
− | ==Solution 1==
| |
− |
| |
− | <asy>
| |
− | import three;
| |
− |
| |
− | currentprojection = orthographic(1,1,1);
| |
− |
| |
− | triple O = (0,0,0);
| |
− | triple A = (0,2,0);
| |
− | triple B = (0,0,1);
| |
− | triple C = (3,0,0);
| |
− | triple D = (3,2,1);
| |
− | triple E = (3,2,0);
| |
− | triple F = (0,2,1);
| |
− | triple G = (3,0,1);
| |
− |
| |
− | draw(A--B--C--cycle, red);
| |
− | draw(A--B--D--cycle, red);
| |
− | draw(A--C--D--cycle, red);
| |
− | draw(B--C--D--cycle, red);
| |
− |
| |
− | draw(E--A--O--C--cycle);
| |
− | draw(D--F--B--G--cycle);
| |
− | draw(O--B);
| |
− | draw(A--F);
| |
− | draw(E--D);
| |
− | draw(C--G);
| |
− |
| |
− | label("$O$", O, SW);
| |
− | label("$A$", A, NW);
| |
− | label("$B$", B, W);
| |
− | label("$C$", C, S);
| |
− | label("$D$", D, NE);
| |
− | label("$E$", E, SE);
| |
− | label("$F$", F, NW);
| |
− | label("$G$", G, NE);
| |
− | </asy>
| |
− |
| |
− |
| |
− | Inscribe tetrahedron <math>ABCD</math> in an rectangular prism as shown above.
| |
− |
| |
− | By the Pythagorean theorem, we note
| |
− |
| |
− | <cmath>OA^2 + OB^2 = AB^2 = 41,</cmath>
| |
− | <cmath>OA^2 + OC^2 = AC^2 = 80, \text{and}</cmath>
| |
− | <cmath>OB^2 + OC^2 = BC^2 = 89.</cmath>
| |
− |
| |
− | Solving yields <math>OA = 4, OB = 5,</math> and <math>OC = 8.</math>
| |
− |
| |
− | Since each face of the tetrahedron is congruent, we know the point we seek is the center of the circumsphere of <math>ABCD.</math> We know all rectangular prisms can be inscribed in a circumsphere, therefore the circumsphere of the rectangular prism is also the circumsphere of <math>ABCD.</math>
| |
− |
| |
− | We know that the distance from all <math>4</math> faces must be the same, so we only need to find the distance from the center to plane <math>ABC</math>.
| |
− |
| |
− | Let <math>O = (0,0,0), A = (4,0,0), B = (0,5,0),</math> and <math>C = (0,0,8).</math> We obtain that the plane of <math>ABC</math> can be marked as <math>\frac{x}{4} + \frac{y}{5} + \frac{z}{8} = 1,</math> or <math>10x + 8y + 5z - 40 = 0,</math> and the center of the prism is <math>(2,\frac{5}{2},4).</math>
| |
− |
| |
− | Using the Point-to-Plane distance formula, our distance is
| |
− |
| |
− | <cmath>d = \frac{|10\cdot 2 + 8\cdot \frac{5}{2} + 5\cdot 4 - 40|}{\sqrt{10^2 + 8^2 + 5^2}} = \frac{20}{\sqrt{189}} = \frac{20\sqrt{21}}{63}.</cmath>
| |
− |
| |
− | Our answer is <math>20 + 21 + 63 = \boxed{104}.</math>
| |
− |
| |
− | - spectraldragon8
| |
− |
| |
| ==Solution 1== | | ==Solution 1== |
| Notice that <math>41=4^2+5^2</math>, <math>89=5^2+8^2</math>, and <math>80=8^2+4^2</math>, let <math>A~(0,0,0)</math>, <math>B~(4,5,0)</math>, <math>C~(0,5,8)</math>, and <math>D~(4,0,8)</math>. Then the plane <math>BCD</math> has a normal | | Notice that <math>41=4^2+5^2</math>, <math>89=5^2+8^2</math>, and <math>80=8^2+4^2</math>, let <math>A~(0,0,0)</math>, <math>B~(4,5,0)</math>, <math>C~(0,5,8)</math>, and <math>D~(4,0,8)</math>. Then the plane <math>BCD</math> has a normal |
Revision as of 20:05, 2 February 2024
Solution 1
Notice that , , and , let , , , and . Then the plane has a normal
Hence, the distance from to plane , or the height of the tetrahedron, is
Each side of the tetrahedron has the same area due to congruency by "S-S-S", and we call it . Then by the volume formula for cones,
Hence, , and so the answer is .
Solution by Quantum-Phantom
See also
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.