Difference between revisions of "2024 AIME I Problems/Problem 10"
Mathwiz 1207 (talk | contribs) m (→Solution 3) |
Mathwiz 1207 (talk | contribs) m (→Solution 3) |
||
Line 24: | Line 24: | ||
<cmath>\cos(A) = \frac{10^2 + 5^2 - 9^2}{2 \cdot 10 \cdot 5} = \frac{11}{25}</cmath> | <cmath>\cos(A) = \frac{10^2 + 5^2 - 9^2}{2 \cdot 10 \cdot 5} = \frac{11}{25}</cmath> | ||
Thus, we can find that the side lengths of <math>\triangle AEF</math> are <math>\frac{250}{11}, \frac{125}{11}, \frac{225}{11}</math>. Then, by Stewart's theorem, <math>AM = \frac{13 \cdot 25}{22}</math>. By Power of a Point, | Thus, we can find that the side lengths of <math>\triangle AEF</math> are <math>\frac{250}{11}, \frac{125}{11}, \frac{225}{11}</math>. Then, by Stewart's theorem, <math>AM = \frac{13 \cdot 25}{22}</math>. By Power of a Point, | ||
− | <cmath>\overline{MB} \cdot \overline{MB} = \overline{MA} \cdot \overline{ | + | <cmath>\overline{MB} \cdot \overline{MB} = \overline{MA} \cdot \overline{MP}</cmath> |
<cmath>\frac{225}{22} \cdot \frac{225}{22} = \overline{MP} \cdot \frac{13 \cdot 25}{22} \implies \overline{MP} = \frac{225 \cdot 9}{22 \cdot 13}</cmath> | <cmath>\frac{225}{22} \cdot \frac{225}{22} = \overline{MP} \cdot \frac{13 \cdot 25}{22} \implies \overline{MP} = \frac{225 \cdot 9}{22 \cdot 13}</cmath> | ||
Thus, | Thus, |
Revision as of 19:56, 3 February 2024
Contents
[hide]Problem
Let be a triangle inscribed in circle . Let the tangents to at and intersect at point , and let intersect at . Find , if , , and .
Solution 1
From the tangency condition we have . With LoC we have and . Then, . Using LoC we can find : . Thus, . By Power of a Point, so which gives . Finally, we have .
~angie.
Solution 2
Well know is the symmedian, which implies where is the midpoint of . By Appolonius theorem, . Thus, we have
~Bluesoul
Solution 3
Extend sides and to points and , respectively, such that and are the feet of the altitudes in . Denote the feet of the altitude from to as , and let denote the orthocenter of . Call the midpoint of segment . By the Three Tangents Lemma, we have that and are both tangents to , and since is the midpoint of , . Additionally, by angle chasing, we get that: Also, Furthermore, From this, we see that with a scale factor of . By the Law of Cosines, Thus, we can find that the side lengths of are . Then, by Stewart's theorem, . By Power of a Point, Thus, Therefore, the answer is .
~mathwiz_1207
Solution 4 (LoC spam)
Connect lines and . From the angle by tanget formula, we have . Therefore by AA similarity, . Let . Using ratios, we have Similarly, using angle by tangent, we have , and by AA similarity, . By ratios, we have However, because , we have so Now using Law of Cosines on in triangle , we have Solving, we find . Now we can solve for . Using Law of Cosines on we have
Solving, we get Now we have a system of equations using Law of Cosines on and ,
Solving, we find , so our desired answer is .
~evanhliu2009
Video Solution 1 by OmegaLearn.org
See also
2024 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.