Difference between revisions of "2021 Fall AMC 10A Problems/Problem 16"

(Solution 2 (Graphing))
m (Solution 5 (Semi-Fakesolve))
 
(43 intermediate revisions by 7 users not shown)
Line 5: Line 5:
 
\textbf{(D) }\text{ the point }\left(\dfrac12, 0\right)\qquad \textbf{(E) }\text{the point }(1,0)</math>
 
\textbf{(D) }\text{ the point }\left(\dfrac12, 0\right)\qquad \textbf{(E) }\text{the point }(1,0)</math>
  
==Solution 1 (Piecewise Function)==
+
==Solution 1 (Observations)==
<b>IN PROGRESS AND WILL FINISH SOON. NO EDIT PLEASE. A MILLION THANKS.</b>
+
Note that <cmath>f(1-x)=|\lfloor 1-x\rfloor|-|\lfloor x\rfloor|=-f(x),</cmath>
 +
so <math>f\left(\frac12+x\right)=-f\left(\frac12-x\right)</math>.
  
~MRENTHUSIASM
+
This means that the graph is symmetric about <math>\boxed{\textbf{(D) }\text{ the point }\left(\dfrac12, 0\right)}</math>.
  
 
==Solution 2 (Graphing)==
 
==Solution 2 (Graphing)==
The graph of <math>y=|\lfloor x \rfloor|</math> is shown below:
+
Let <math>y_1=|\lfloor x \rfloor|</math> and <math>y_2=|\lfloor 1 - x \rfloor|=|\lfloor -(x-1) \rfloor|.</math> Note that the graph of <math>y_2</math> is a reflection of the graph of <math>y_1</math> about the <math>y</math>-axis, followed by a translation <math>1</math> unit to the right.
 +
 
 +
The graph of <math>y_1</math> is shown below:
 +
<asy>
 +
/* Made by MRENTHUSIASM */
 +
size(250);
 +
 
 +
int xMin = -10;
 +
int xMax = 10;
 +
int yMin = -10;
 +
int yMax = 10;
 +
 
 +
//Draws the horizontal gridlines
 +
void horizontalLines()
 +
{
 +
  for (int i = yMin+1; i < yMax; ++i)
 +
  {
 +
    draw((xMin,i)--(xMax,i), mediumgray+linewidth(0.4));
 +
  }
 +
}
 +
 
 +
//Draws the vertical gridlines
 +
void verticalLines()
 +
{
 +
  for (int i = xMin+1; i < xMax; ++i)
 +
  {
 +
    draw((i,yMin)--(i,yMax), mediumgray+linewidth(0.4));
 +
  }
 +
}
 +
 
 +
//Draws the horizontal ticks
 +
void horizontalTicks()
 +
{
 +
  for (int i = yMin+1; i < yMax; ++i)
 +
  {
 +
    draw((-3/16,i)--(3/16,i), black+linewidth(1));
 +
  }
 +
}
 +
 
 +
//Draws the vertical ticks
 +
void verticalTicks()
 +
{
 +
  for (int i = xMin+1; i < xMax; ++i)
 +
  {
 +
    draw((i,-3/16)--(i,3/16), black+linewidth(1));
 +
  }
 +
}
 +
 
 +
//Draws and labels coordinate axes
 +
void drawLabelAxes()
 +
{
 +
draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5));
 +
draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5));
 +
label("$x$",(xMax,0),(2,0));
 +
label("$y$",(0,yMax),(0,2));
 +
}
 +
 
 +
horizontalLines();
 +
verticalLines();
 +
horizontalTicks();
 +
verticalTicks();
 +
drawLabelAxes();
 +
 
 +
path P[], Q[];
 +
for (int i = 0; i < 9; ++i) {
 +
    P[i] = (i,i)--(i+1,i);
 +
    Q[i] = (-i,i+1)--(-i-1,i+1);
 +
}
 +
draw(P^^Q,red+linewidth(1.25));
 +
for (int i = 0; i < 9; ++i) {
 +
    dot((i,i),red+linewidth(4));
 +
    dot((i+1,i),red+linewidth(0.7),UnFill);
 +
    dot((-i-1,i+1),red+linewidth(4));
 +
    dot((-i,i+1),red+linewidth(0.7),UnFill);
 +
}
 +
</asy>
 +
The graph of <math>y_2</math> is shown below:
 
<asy>
 
<asy>
 
/* Made by MRENTHUSIASM */
 
/* Made by MRENTHUSIASM */
size(300,300);  
+
size(250);  
  
 
int xMin = -10;
 
int xMin = -10;
Line 74: Line 151:
 
path P[], Q[];
 
path P[], Q[];
 
for (int i = 0; i < 9; ++i) {
 
for (int i = 0; i < 9; ++i) {
P[i] = (i,i)--(i+1,i);
+
    P[i] = (i,i)--(i+1,i);
 
     Q[i] = (-i,i+1)--(-i-1,i+1);
 
     Q[i] = (-i,i+1)--(-i-1,i+1);
 
}
 
}
draw(P^^Q,red,"$y=|\lfloor x \rfloor|$");
+
draw(P^^Q,heavygreen+linewidth(1.25));
 
for (int i = 0; i < 9; ++i) {
 
for (int i = 0; i < 9; ++i) {
dot((i,i),red);
+
    dot((i,i),heavygreen+linewidth(0.7),UnFill);
     dot((i+1,i),red,UnFill);
+
     dot((i+1,i),heavygreen+linewidth(4));
     dot((-i-1,i+1),red);
+
     dot((-i-1,i+1),heavygreen+linewidth(0.7),UnFill);
     dot((-i,i+1),red,UnFill);
+
     dot((-i,i+1),heavygreen+linewidth(4));
 
}
 
}
 
</asy>
 
</asy>
The graph of <math>y=|\lfloor 1 - x \rfloor|</math> is shown below:
+
The graph of <math>f(x)=y_1-y_2</math> is shown below:
 +
<asy>
 +
/* Made by MRENTHUSIASM */
 +
size(250);
  
<b>DIAGRAM WILL BE READY VERY SOON. APPRECIATE IT IF THERE'S NO EDIT AT THIS PAGE WITHIN THE NEXT HOUR.</b>
+
int xMin = -10;
 +
int xMax = 10;
 +
int yMin = -10;
 +
int yMax = 10;
  
Taking the difference, we graph <math>f(x) = |\lfloor x \rfloor| - |\lfloor 1 - x \rfloor|,</math> as shown below:
+
//Draws the horizontal gridlines
 +
void horizontalLines()
 +
{
 +
  for (int i = yMin+1; i < yMax; ++i)
 +
  {
 +
    draw((xMin,i)--(xMax,i), mediumgray+linewidth(0.4));
 +
  }
 +
}
  
<b>DIAGRAM WILL BE READY VERY SOON. APPRECIATE IT IF THERE'S NO EDIT AT THIS PAGE WITHIN THE NEXT HOUR.</b>
+
//Draws the vertical gridlines
 +
void verticalLines()
 +
{
 +
  for (int i = xMin+1; i < xMax; ++i)
 +
  {
 +
    draw((i,yMin)--(i,yMax), mediumgray+linewidth(0.4));
 +
  }
 +
}
  
Therefore, the answer is <math>\boxed{\textbf{(D) }\text{ the point }\left(\dfrac12, 0\right)}.</math>
+
//Draws the horizontal ticks
 +
void horizontalTicks()
 +
{
 +
  for (int i = yMin+1; i < yMax; ++i)
 +
  {
 +
    draw((-3/16,i)--(3/16,i), black+linewidth(1));
 +
  }
 +
}
 +
 
 +
//Draws the vertical ticks
 +
void verticalTicks()
 +
{
 +
  for (int i = xMin+1; i < xMax; ++i)
 +
  {
 +
    draw((i,-3/16)--(i,3/16), black+linewidth(1));
 +
  }
 +
}
 +
 
 +
//Draws and labels coordinate axes
 +
void drawLabelAxes()
 +
{
 +
draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5));
 +
draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5));
 +
label("$x$",(xMax,0),(2,0));
 +
label("$y$",(0,yMax),(0,2));
 +
}
 +
 
 +
horizontalLines();
 +
verticalLines();
 +
horizontalTicks();
 +
verticalTicks();
 +
drawLabelAxes();
 +
 
 +
draw((-10,0)--(10,0),mediumblue+linewidth(1.25),"$y=|\lfloor x \rfloor|$");
 +
for (int i = 0; i > -10; --i) {
 +
    dot((i,-1),mediumblue+linewidth(4));
 +
}
 +
for (int i = 1; i < 10; ++i) {
 +
    dot((i,1),mediumblue+linewidth(4));
 +
}
 +
for (int i = -9; i < 10; ++i) {
 +
    dot((i,0),mediumblue+linewidth(0.7),UnFill);
 +
}
 +
</asy>
 +
 
 +
Therefore, the graph of <math>f(x)</math> is symmetric about <math>\boxed{\textbf{(D) }\text{ the point }\left(\dfrac12, 0\right)}.</math>
 +
 
 +
~MRENTHUSIASM
 +
 
 +
==Solution 3 (Casework)==
 +
For all <math>x\in\mathbb{R}</math> and <math>n\in\mathbb{Z},</math> note that:
 +
<ol style="margin-left: 1.5em;">
 +
  <li><math>\lfloor x+n \rfloor = \lfloor x \rfloor + n</math> and <math>\lceil x+n \rceil = \lceil x \rceil + n</math></li><p>
 +
  <li><math>\lfloor -x \rfloor = -\lceil x \rceil</math></li><p>
 +
  <li><math>\lceil x \rceil - \lfloor x \rfloor = \begin{cases}
 +
0 & \mathrm{if} \ x\in\mathbb{Z} \
 +
1 & \mathrm{if} \ x\not\in\mathbb{Z}
 +
\end{cases}</math></li>
 +
</ol>
 +
We rewrite <math>f(x)</math> as
 +
<cmath>\begin{align*}
 +
f(x) &= |\lfloor x \rfloor| - |\lfloor 1 - x \rfloor| \
 +
&= |\lfloor x \rfloor| - |-\lceil x - 1 \rceil| \
 +
&= |\lfloor x \rfloor| - |-\lceil x \rceil + 1|.
 +
\end{align*}</cmath>
 +
We apply casework to the value of <math>x:</math>
 +
<ol style="margin-left: 1.5em;">
 +
  <li><math>x\in\mathbb{Z}^-</math></li><p>
 +
It follows that <math>f(x)=-x-(-x+1)=-1.</math><p>
 +
  <li><math>x=0</math></li><p>
 +
It follows that <math>f(x)=0-1=-1.</math><p>
 +
  <li><math>x\in\mathbb{Z}^+</math></li><p>
 +
It follows that <math>f(x)=x-(x-1)=1.</math><p>
 +
  <li><math>x\not\in\mathbb{Z}</math> and <math>x<0</math></li><p>
 +
It follows that <math>f(x)=-\lfloor x \rfloor - (-\lceil x\rceil+1)=(\lceil x \rceil - \lfloor x \rfloor)-1=0.</math><p>
 +
  <li><math>x\not\in\mathbb{Z}</math> and <math>0<x<1</math></li><p>
 +
It follows that <math>f(x)=0-0=0.</math><p>
 +
  <li><math>x\not\in\mathbb{Z}</math> and <math>x>1</math></li><p>
 +
It follows that <math>f(x)=\lfloor x \rfloor - (\lceil x\rceil-1)=(\lfloor x \rfloor - \lceil x \rceil)+1=0.</math><p>
 +
</ol>
 +
Together, we have
 +
<cmath>f(x)=\begin{cases}
 +
-1 & \mathrm{if} \ x\in\mathbb{Z}^{-}\cup\{0\} \
 +
1 & \mathrm{if} \ x\in\mathbb{Z}^{+} \
 +
0 & \mathrm{if} \ x\not\in\mathbb{Z}
 +
\end{cases},</cmath>
 +
so the graph of <math>f(x)</math> is symmetric about <math>\boxed{\textbf{(D) }\text{ the point }\left(\dfrac12, 0\right)}.</math>
 +
 
 +
Alternatively, we can eliminate <math>\textbf{(A)}, \textbf{(B)}, \textbf{(C)},</math> and <math>\textbf{(E)}</math> once we finish with Case 3. This leaves us with <math>\textbf{(D)}.</math>
  
 
~MRENTHUSIASM
 
~MRENTHUSIASM
 +
 +
== Solution 4 (Casework) ==
 +
Denote <math>x = a + b</math>, where <math>a \in \Bbb Z</math> and <math>b \in \left[ 0 , 1 \right)</math>.
 +
Hence, <math>a</math> is the integer part of <math>x</math> and <math>b</math> is the decimal part of <math>x</math>.
 +
 +
'''Case 1''': <math>b = 0</math>.
 +
 +
We have
 +
<cmath>
 +
\begin{align*}
 +
f \left( x \right) & = \left| \lfloor x \rfloor \right|
 +
- \left| \lfloor 1 - x \rfloor \right| \
 +
& = | a | - | 1 - a | \
 +
& =
 +
\left\{
 +
\begin{array}{ll}
 +
a - \left( a - 1 \right) & \mbox{ if } a \in \Bbb Z \mbox{ and } a \geq 1 \
 +
-1 & \mbox{ if } a = 0 \
 +
- a - \left( 1 - a \right) & \mbox{ if } a \in \Bbb Z \mbox{ and } a \leq -1
 +
\end{array}
 +
\right. \
 +
& = \left\{
 +
\begin{array}{ll}
 +
1 & \mbox{ if } a \in \Bbb Z \mbox{ and } a \geq 1 \
 +
-1 & \mbox{ if } a = 0 \
 +
-1 & \mbox{ if } a \in \Bbb Z \mbox{ and } a \leq -1
 +
\end{array}
 +
\right. \
 +
& = \left\{
 +
\begin{array}{ll}
 +
1 & \mbox{ if } a \in \Bbb Z \mbox{ and } a \geq 1 \
 +
-1 & \mbox{ if } a \in \Bbb Z \mbox{ and } a \leq 0
 +
\end{array}
 +
\right.
 +
\end{align*}
 +
</cmath>
 +
 +
'''Case 2''': <math>b \neq 0</math>.
 +
 +
We have
 +
<cmath>
 +
\begin{align*}
 +
f \left( x \right) & = \left| \lfloor x \rfloor \right|
 +
- \left| \lfloor 1 - x \rfloor \right| \
 +
& = | a | - | \lfloor 1 - a - b \rfloor | \
 +
& = | a | - | \lfloor - a + \left( 1 - b \right) \rfloor | \
 +
& = | a | - | - a | \
 +
& = 0 .
 +
\end{align*}
 +
</cmath>
 +
 +
Therefore, the graph of <math>f \left( x \right)</math> is symmetric through the point <math>\left( \frac{1}{2} , 0 \right)</math>.
 +
 +
Therefore, the answer is <math>\boxed{\textbf{(D) }\text{ the point }\left(\dfrac12, 0\right)}</math>.
 +
 +
~Steven Chen (www.professorchenedu.com)
 +
 +
== Solution 5 (Semi-Fakesolve) ==
 +
 +
Suppose <math>x\in \mathbb{Z},</math> making the equation equivalent to <math>f(x) = |x|-|1-x|.</math> We consider the cases when <math>x\in (-\infty, 0), 0, 1, (1, \infty).</math>
 +
 +
 +
If <math>x\in (-\infty, 0)</math>, we have <math>|x| = -x</math> and <math>|1-x| = 1-x,</math> so <math>f(x) = -x - (1-x) = -1</math>.
 +
 +
 +
If <math>x = 0</math> or <math>x = 1</math>, we trivially get <math>f(x) = -1</math> and <math>1</math> respectively.
 +
 +
 +
If <math>x\in (1, \infty)</math>, we have <math>|x| = x</math> and <math>|1-x| = x - 1</math>, giving <math>f(x) = x-(x-1)= 1.</math>
 +
 +
 +
Since, for all <math>x\in \mathbb{Z} \leq 0</math>, <math>f(x)  =-1</math> and <math>x\in \mathbb{Z} \geq 1, f(x) = 1</math>, we can conclude that it is symmetric across the coordinate pair
 +
<cmath>\left(\frac{0 + 1}{2}, \frac{-1 + 1}{2}\right) = \boxed{\textbf{(D)}\ \left(\frac{1}{2}, 0\right)},</cmath>
 +
the midpoint of the "endpoints" of these line segments.
 +
 +
<asy>
 +
size(250); //Credit to MRENTHUSIASM
 +
 +
int xMin = -10;
 +
int xMax = 10;
 +
int yMin = -10;
 +
int yMax = 10;
 +
 +
//Draws the horizontal gridlines
 +
void horizontalLines()
 +
{
 +
  for (int i = yMin+1; i < yMax; ++i)
 +
  {
 +
    draw((xMin,i)--(xMax,i), mediumgray+linewidth(0.4));
 +
  }
 +
}
 +
 +
//Draws the vertical gridlines
 +
void verticalLines()
 +
{
 +
  for (int i = xMin+1; i < xMax; ++i)
 +
  {
 +
    draw((i,yMin)--(i,yMax), mediumgray+linewidth(0.4));
 +
  }
 +
}
 +
 +
//Draws the horizontal ticks
 +
void horizontalTicks()
 +
{
 +
  for (int i = yMin+1; i < yMax; ++i)
 +
  {
 +
    draw((-3/16,i)--(3/16,i), black+linewidth(1));
 +
  }
 +
}
 +
 +
//Draws the vertical ticks
 +
void verticalTicks()
 +
{
 +
  for (int i = xMin+1; i < xMax; ++i)
 +
  {
 +
    draw((i,-3/16)--(i,3/16), black+linewidth(1));
 +
  }
 +
}
 +
 +
//Draws and labels coordinate axes
 +
void drawLabelAxes()
 +
{
 +
draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5));
 +
draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5));
 +
label("$x$",(xMax,0),(2,0));
 +
label("$y$",(0,yMax),(0,2));
 +
}
 +
 +
horizontalLines();
 +
verticalLines();
 +
horizontalTicks();
 +
verticalTicks();
 +
drawLabelAxes();
 +
 +
for (int i = 0; i > -10; --i) {
 +
    dot((i,-1),mediumblue+linewidth(4));
 +
}
 +
for (int i = 1; i < 10; ++i) {
 +
    dot((i,1),mediumblue+linewidth(4));
 +
}
 +
 +
</asy>
 +
 +
 +
 +
Just considering the integers is never a good idea when dealing with any function, especially one with floor functions. However, after dealing with the case "when <math>x\in \mathbb{Z}</math>", it becomes apparent that the graph of <math>f(x)</math> is symmetric about <math>x = \frac{1}{2}</math>, or more specifically, the point <math>\left(\frac{1}{2}, 0\right).</math>
 +
 +
-Benedict T (countmath1)
 +
 +
==Video Solution ==
 +
https://youtu.be/RpxlZJRiSjk
 +
 +
~Education, the Study of Everything
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2021 Fall|ab=A|num-b=15|num-a=17}}
 
{{AMC10 box|year=2021 Fall|ab=A|num-b=15|num-a=17}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 14:56, 7 March 2024

Problem

The graph of \[f(x) = |\lfloor x \rfloor| - |\lfloor 1 - x \rfloor|\] is symmetric about which of the following? (Here $\lfloor x \rfloor$ is the greatest integer not exceeding $x$.)

$\textbf{(A) }\text{the }y\text{-axis}\qquad \textbf{(B) }\text{the line }x = 1\qquad \textbf{(C) }\text{the origin}\qquad \textbf{(D) }\text{ the point }\left(\dfrac12, 0\right)\qquad \textbf{(E) }\text{the point }(1,0)$

Solution 1 (Observations)

Note that \[f(1-x)=|\lfloor 1-x\rfloor|-|\lfloor x\rfloor|=-f(x),\] so $f\left(\frac12+x\right)=-f\left(\frac12-x\right)$.

This means that the graph is symmetric about $\boxed{\textbf{(D) }\text{ the point }\left(\dfrac12, 0\right)}$.

Solution 2 (Graphing)

Let $y_1=|\lfloor x \rfloor|$ and $y_2=|\lfloor 1 - x \rfloor|=|\lfloor -(x-1) \rfloor|.$ Note that the graph of $y_2$ is a reflection of the graph of $y_1$ about the $y$-axis, followed by a translation $1$ unit to the right.

The graph of $y_1$ is shown below: [asy] /* Made by MRENTHUSIASM */ size(250);   int xMin = -10; int xMax = 10; int yMin = -10; int yMax = 10;  //Draws the horizontal gridlines void horizontalLines() {   for (int i = yMin+1; i < yMax; ++i)   {     draw((xMin,i)--(xMax,i), mediumgray+linewidth(0.4));   } }  //Draws the vertical gridlines void verticalLines() {   for (int i = xMin+1; i < xMax; ++i)   {     draw((i,yMin)--(i,yMax), mediumgray+linewidth(0.4));   } }  //Draws the horizontal ticks void horizontalTicks() {   for (int i = yMin+1; i < yMax; ++i)   {     draw((-3/16,i)--(3/16,i), black+linewidth(1));   } }  //Draws the vertical ticks void verticalTicks() {   for (int i = xMin+1; i < xMax; ++i)   {     draw((i,-3/16)--(i,3/16), black+linewidth(1));   } }  //Draws and labels coordinate axes void drawLabelAxes() { 	draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5)); 	draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5)); 	label("$x$",(xMax,0),(2,0)); 	label("$y$",(0,yMax),(0,2)); }  horizontalLines(); verticalLines(); horizontalTicks(); verticalTicks(); drawLabelAxes();  path P[], Q[]; for (int i = 0; i < 9; ++i) {     P[i] = (i,i)--(i+1,i);     Q[i] = (-i,i+1)--(-i-1,i+1); } draw(P^^Q,red+linewidth(1.25)); for (int i = 0; i < 9; ++i) {     dot((i,i),red+linewidth(4));     dot((i+1,i),red+linewidth(0.7),UnFill);     dot((-i-1,i+1),red+linewidth(4));     dot((-i,i+1),red+linewidth(0.7),UnFill); } [/asy] The graph of $y_2$ is shown below: [asy] /* Made by MRENTHUSIASM */ size(250);   int xMin = -10; int xMax = 10; int yMin = -10; int yMax = 10;  //Draws the horizontal gridlines void horizontalLines() {   for (int i = yMin+1; i < yMax; ++i)   {     draw((xMin,i)--(xMax,i), mediumgray+linewidth(0.4));   } }  //Draws the vertical gridlines void verticalLines() {   for (int i = xMin+1; i < xMax; ++i)   {     draw((i,yMin)--(i,yMax), mediumgray+linewidth(0.4));   } }  //Draws the horizontal ticks void horizontalTicks() {   for (int i = yMin+1; i < yMax; ++i)   {     draw((-3/16,i)--(3/16,i), black+linewidth(1));   } }  //Draws the vertical ticks void verticalTicks() {   for (int i = xMin+1; i < xMax; ++i)   {     draw((i,-3/16)--(i,3/16), black+linewidth(1));   } }  //Draws and labels coordinate axes void drawLabelAxes() { 	draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5)); 	draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5)); 	label("$x$",(xMax,0),(2,0)); 	label("$y$",(0,yMax),(0,2)); }  horizontalLines(); verticalLines(); horizontalTicks(); verticalTicks(); drawLabelAxes();  path P[], Q[]; for (int i = 0; i < 9; ++i) {     P[i] = (i,i)--(i+1,i);     Q[i] = (-i,i+1)--(-i-1,i+1); } draw(P^^Q,heavygreen+linewidth(1.25)); for (int i = 0; i < 9; ++i) {     dot((i,i),heavygreen+linewidth(0.7),UnFill);     dot((i+1,i),heavygreen+linewidth(4));     dot((-i-1,i+1),heavygreen+linewidth(0.7),UnFill);     dot((-i,i+1),heavygreen+linewidth(4)); } [/asy] The graph of $f(x)=y_1-y_2$ is shown below: [asy] /* Made by MRENTHUSIASM */ size(250);   int xMin = -10; int xMax = 10; int yMin = -10; int yMax = 10;  //Draws the horizontal gridlines void horizontalLines() {   for (int i = yMin+1; i < yMax; ++i)   {     draw((xMin,i)--(xMax,i), mediumgray+linewidth(0.4));   } }  //Draws the vertical gridlines void verticalLines() {   for (int i = xMin+1; i < xMax; ++i)   {     draw((i,yMin)--(i,yMax), mediumgray+linewidth(0.4));   } }  //Draws the horizontal ticks void horizontalTicks() {   for (int i = yMin+1; i < yMax; ++i)   {     draw((-3/16,i)--(3/16,i), black+linewidth(1));   } }  //Draws the vertical ticks void verticalTicks() {   for (int i = xMin+1; i < xMax; ++i)   {     draw((i,-3/16)--(i,3/16), black+linewidth(1));   } }  //Draws and labels coordinate axes void drawLabelAxes() { 	draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5)); 	draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5)); 	label("$x$",(xMax,0),(2,0)); 	label("$y$",(0,yMax),(0,2)); }  horizontalLines(); verticalLines(); horizontalTicks(); verticalTicks(); drawLabelAxes();  draw((-10,0)--(10,0),mediumblue+linewidth(1.25),"$y=|\lfloor x \rfloor|$"); for (int i = 0; i > -10; --i) {     dot((i,-1),mediumblue+linewidth(4)); } for (int i = 1; i < 10; ++i) {     dot((i,1),mediumblue+linewidth(4)); } for (int i = -9; i < 10; ++i) {     dot((i,0),mediumblue+linewidth(0.7),UnFill); } [/asy]

Therefore, the graph of $f(x)$ is symmetric about $\boxed{\textbf{(D) }\text{ the point }\left(\dfrac12, 0\right)}.$

~MRENTHUSIASM

Solution 3 (Casework)

For all $x\in\mathbb{R}$ and $n\in\mathbb{Z},$ note that:

  1. $\lfloor x+n \rfloor = \lfloor x \rfloor + n$ and $\lceil x+n \rceil = \lceil x \rceil + n$
  2. $\lfloor -x \rfloor = -\lceil x \rceil$
  3. $\lceil x \rceil - \lfloor x \rfloor = \begin{cases} 0 & \mathrm{if} \ x\in\mathbb{Z} \\  1 & \mathrm{if} \ x\not\in\mathbb{Z} \end{cases}$

We rewrite $f(x)$ as \begin{align*} f(x) &= |\lfloor x \rfloor| - |\lfloor 1 - x \rfloor| \\ &= |\lfloor x \rfloor| - |-\lceil x - 1 \rceil| \\ &= |\lfloor x \rfloor| - |-\lceil x \rceil + 1|. \end{align*} We apply casework to the value of $x:$

  1. $x\in\mathbb{Z}^-$
  2. It follows that $f(x)=-x-(-x+1)=-1.$

  3. $x=0$
  4. It follows that $f(x)=0-1=-1.$

  5. $x\in\mathbb{Z}^+$
  6. It follows that $f(x)=x-(x-1)=1.$

  7. $x\not\in\mathbb{Z}$ and $x<0$
  8. It follows that $f(x)=-\lfloor x \rfloor - (-\lceil x\rceil+1)=(\lceil x \rceil - \lfloor x \rfloor)-1=0.$

  9. $x\not\in\mathbb{Z}$ and $0<x<1$
  10. It follows that $f(x)=0-0=0.$

  11. $x\not\in\mathbb{Z}$ and $x>1$
  12. It follows that $f(x)=\lfloor x \rfloor - (\lceil x\rceil-1)=(\lfloor x \rfloor - \lceil x \rceil)+1=0.$

Together, we have \[f(x)=\begin{cases} -1 & \mathrm{if} \ x\in\mathbb{Z}^{-}\cup\{0\} \\  1 & \mathrm{if} \ x\in\mathbb{Z}^{+} \\ 0 & \mathrm{if} \ x\not\in\mathbb{Z} \end{cases},\] so the graph of $f(x)$ is symmetric about $\boxed{\textbf{(D) }\text{ the point }\left(\dfrac12, 0\right)}.$

Alternatively, we can eliminate $\textbf{(A)}, \textbf{(B)}, \textbf{(C)},$ and $\textbf{(E)}$ once we finish with Case 3. This leaves us with $\textbf{(D)}.$

~MRENTHUSIASM

Solution 4 (Casework)

Denote $x = a + b$, where $a \in \Bbb Z$ and $b \in \left[ 0 , 1 \right)$. Hence, $a$ is the integer part of $x$ and $b$ is the decimal part of $x$.

Case 1: $b = 0$.

We have \begin{align*} f \left( x \right) & = \left| \lfloor x \rfloor \right| - \left| \lfloor 1 - x \rfloor \right| \\ & = | a | - | 1 - a | \\ & = \left\{ \begin{array}{ll} a - \left( a - 1 \right) & \mbox{ if } a \in \Bbb Z \mbox{ and } a \geq 1 \\ -1 & \mbox{ if } a = 0 \\ - a - \left( 1 - a \right) & \mbox{ if } a \in \Bbb Z \mbox{ and } a \leq -1 \end{array} \right. \\ & = \left\{ \begin{array}{ll} 1 & \mbox{ if } a \in \Bbb Z \mbox{ and } a \geq 1 \\ -1 & \mbox{ if } a = 0 \\ -1 & \mbox{ if } a \in \Bbb Z \mbox{ and } a \leq -1 \end{array} \right. \\ & = \left\{ \begin{array}{ll} 1 & \mbox{ if } a \in \Bbb Z \mbox{ and } a \geq 1 \\ -1 & \mbox{ if } a \in \Bbb Z \mbox{ and } a \leq 0 \end{array} \right. \end{align*}

Case 2: $b \neq 0$.

We have \begin{align*} f \left( x \right) & = \left| \lfloor x \rfloor \right| - \left| \lfloor 1 - x \rfloor \right| \\ & = | a | - | \lfloor 1 - a - b \rfloor | \\ & = | a | - | \lfloor - a + \left( 1 - b \right) \rfloor | \\ & = | a | - | - a | \\ & = 0 . \end{align*}

Therefore, the graph of $f \left( x \right)$ is symmetric through the point $\left( \frac{1}{2} , 0 \right)$.

Therefore, the answer is $\boxed{\textbf{(D) }\text{ the point }\left(\dfrac12, 0\right)}$.

~Steven Chen (www.professorchenedu.com)

Solution 5 (Semi-Fakesolve)

Suppose $x\in \mathbb{Z},$ making the equation equivalent to $f(x) = |x|-|1-x|.$ We consider the cases when $x\in (-\infty, 0), 0, 1, (1, \infty).$


If $x\in (-\infty, 0)$, we have $|x| = -x$ and $|1-x| = 1-x,$ so $f(x) = -x - (1-x) = -1$.


If $x = 0$ or $x = 1$, we trivially get $f(x) = -1$ and $1$ respectively.


If $x\in (1, \infty)$, we have $|x| = x$ and $|1-x| = x - 1$, giving $f(x) = x-(x-1)= 1.$


Since, for all $x\in \mathbb{Z} \leq 0$, $f(x)  =-1$ and $x\in \mathbb{Z} \geq 1, f(x) = 1$, we can conclude that it is symmetric across the coordinate pair \[\left(\frac{0 + 1}{2}, \frac{-1 + 1}{2}\right) = \boxed{\textbf{(D)}\ \left(\frac{1}{2}, 0\right)},\] the midpoint of the "endpoints" of these line segments.

[asy] size(250); //Credit to MRENTHUSIASM  int xMin = -10; int xMax = 10; int yMin = -10; int yMax = 10;  //Draws the horizontal gridlines void horizontalLines() {   for (int i = yMin+1; i < yMax; ++i)   {     draw((xMin,i)--(xMax,i), mediumgray+linewidth(0.4));   } }  //Draws the vertical gridlines void verticalLines() {   for (int i = xMin+1; i < xMax; ++i)   {     draw((i,yMin)--(i,yMax), mediumgray+linewidth(0.4));   } }  //Draws the horizontal ticks void horizontalTicks() {   for (int i = yMin+1; i < yMax; ++i)   {     draw((-3/16,i)--(3/16,i), black+linewidth(1));   } }  //Draws the vertical ticks void verticalTicks() {   for (int i = xMin+1; i < xMax; ++i)   {     draw((i,-3/16)--(i,3/16), black+linewidth(1));   } }  //Draws and labels coordinate axes void drawLabelAxes() { 	draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5)); 	draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5)); 	label("$x$",(xMax,0),(2,0)); 	label("$y$",(0,yMax),(0,2)); }  horizontalLines(); verticalLines(); horizontalTicks(); verticalTicks(); drawLabelAxes();  for (int i = 0; i > -10; --i) {     dot((i,-1),mediumblue+linewidth(4)); } for (int i = 1; i < 10; ++i) {     dot((i,1),mediumblue+linewidth(4)); }  [/asy]


Just considering the integers is never a good idea when dealing with any function, especially one with floor functions. However, after dealing with the case "when $x\in \mathbb{Z}$", it becomes apparent that the graph of $f(x)$ is symmetric about $x = \frac{1}{2}$, or more specifically, the point $\left(\frac{1}{2}, 0\right).$

-Benedict T (countmath1)

Video Solution

https://youtu.be/RpxlZJRiSjk

~Education, the Study of Everything

See Also

2021 Fall AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png