Difference between revisions of "2000 AIME I Problems/Problem 6"

m
Line 3: Line 3:
  
 
== Solution ==
 
== Solution ==
{{solution}}
+
From the condition given,
 +
 
 +
<math>\begin{align*}
 +
\frac{x + y}{2} - 2 &= \sqrt{xy}\
 +
x + y - 2\sqrt{xy} &= 4\
 +
(\sqrt{y} - \sqrt{x})^2 &= 4\
 +
\sqrt{y} - \sqrt{x} &= 2
 +
\end{align*}</math>
 +
 
 +
The last equation is true because <math>y > x</math>.
 +
 
 +
Here, we can count how many valid pairs of <math>(\sqrt{x},\sqrt{y})</math> satisfy our equation, rather than <math>(x,y)</math> directly, because <math>(x,y)</math> can get messy.
 +
 
 +
The maximum that <math>\sqrt{y}</math> can be is <math>10^3 - 1 = 999</math> because <math>\sqrt{y}</math> must be an integer (this is because  <math>\sqrt{y} - \sqrt{x} = 2</math>, an integer). Then <math>\sqrt{x} = 997</math>, and we continue this downward until <math>\sqrt{y} = 3</math>, in which case <math>\sqrt{x} = 1</math>. The number of pairs of <math>(\sqrt{x},\sqrt{y})</math>, and so <math>(x,y)</math> is, then, <math>999 - 3 + 1 = \boxed{997}</math>.
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=2000|n=I|num-b=5|num-a=7}}
 
{{AIME box|year=2000|n=I|num-b=5|num-a=7}}

Revision as of 17:04, 31 December 2007

Problem

For how many ordered pairs $(x,y)$ of integers is it true that $0 < x < y < 10^{6}$ and that the arithmetic mean of $x$ and $y$ is exactly $2$ more than the geometric mean of $x$ and $y$?

Solution

From the condition given,

$x+y22=xyx+y2xy=4(yx)2=4yx=2$ (Error compiling LaTeX. Unknown error_msg)

The last equation is true because $y > x$.

Here, we can count how many valid pairs of $(\sqrt{x},\sqrt{y})$ satisfy our equation, rather than $(x,y)$ directly, because $(x,y)$ can get messy.

The maximum that $\sqrt{y}$ can be is $10^3 - 1 = 999$ because $\sqrt{y}$ must be an integer (this is because $\sqrt{y} - \sqrt{x} = 2$, an integer). Then $\sqrt{x} = 997$, and we continue this downward until $\sqrt{y} = 3$, in which case $\sqrt{x} = 1$. The number of pairs of $(\sqrt{x},\sqrt{y})$, and so $(x,y)$ is, then, $999 - 3 + 1 = \boxed{997}$.

See also

2000 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions