Difference between revisions of "2015 AIME I Problems/Problem 4"
(→Solution 3) |
m (→Diagram) |
||
(4 intermediate revisions by 3 users not shown) | |||
Line 26: | Line 26: | ||
</asy> | </asy> | ||
− | Diagram by [[User:RedFireTruck|<font color="#FF0000">RedFireTruck</font>]] ([[User talk:RedFireTruck|<font color="#FFFFFF">talk</font>]] | + | Diagram by [[User:RedFireTruck|<font color="#FF0000">RedFireTruck</font>]] ([[User talk:RedFireTruck|<font color="#FFFFFF">talk</font>]]) |
− | ==Solution 1 | + | ==Solution 1== |
− | Let | + | Let <math>A</math> be the origin, so <math>B=(16,0)</math> and <math>C=(20,0).</math> Using equilateral triangle properties tells us that <math>D=(8,8\sqrt3)</math> and <math>E=(18,2\sqrt3)</math> as well. Therefore, <math>M=(9,\sqrt3)</math> and <math>N=(14,4\sqrt3).</math> Applying the Shoelace Theorem to triangle <math>BMN</math> gives |
+ | |||
+ | <cmath>x=\dfrac 1 2 |16\sqrt3+36\sqrt3+0-(0+14\sqrt3+64\sqrt3)| =13\sqrt3,</cmath> | ||
+ | |||
+ | so <math>x^2=\boxed{507}.</math> | ||
==Solution 2== | ==Solution 2== | ||
Line 58: | Line 62: | ||
The other way is to use the Mean Geometry Theorem. Note that <math>\triangle BCE</math> and <math>\triangle BDA</math> are similar and have the same orientation. Note that <math>B</math> is the weighted average of <math>B</math> and <math>B</math>, <math>M</math> is the weighted average of <math>E</math> and <math>A</math>, and <math>N</math> is the weighted average of <math>C</math> and <math>D</math>. The weights are the same for all three averages. (The weights are actually just <math>\frac{1}{2}</math> and <math>\frac{1}{2}</math>, so these are also unweighted averages.) Thus, by the Mean Geometry Theorem, <math>\triangle BMN</math> is similar to both <math>\triangle BAD</math> and <math>\triangle BEC</math>, which means that <math>\triangle BMN</math> is equilateral. | The other way is to use the Mean Geometry Theorem. Note that <math>\triangle BCE</math> and <math>\triangle BDA</math> are similar and have the same orientation. Note that <math>B</math> is the weighted average of <math>B</math> and <math>B</math>, <math>M</math> is the weighted average of <math>E</math> and <math>A</math>, and <math>N</math> is the weighted average of <math>C</math> and <math>D</math>. The weights are the same for all three averages. (The weights are actually just <math>\frac{1}{2}</math> and <math>\frac{1}{2}</math>, so these are also unweighted averages.) Thus, by the Mean Geometry Theorem, <math>\triangle BMN</math> is similar to both <math>\triangle BAD</math> and <math>\triangle BEC</math>, which means that <math>\triangle BMN</math> is equilateral. | ||
+ | |||
+ | |||
+ | Note: A much easier way to go about finding <math>BM</math> without having to use Stewart's Theorem is to simply drop the altitudes from M and E to AC, thus hitting AC at points X and Y. Then clearly AEY and AMX are similar with ratio 2. But we know that <math>AY = 18 \implies AX = 9 \implies BX = 16-9 = 7</math>. Additionally, <math>MX = \frac{1}{2} (2\sqrt{3}) = \sqrt{3}</math> from similar triangles meaning we can now just do pythagorean theorem on right triangle <math>MXB</math> to get <math>MB = \sqrt{52}</math> - SuperJJ | ||
==Solution 3== | ==Solution 3== | ||
Line 63: | Line 70: | ||
[[File:2015 AIME I 4.png|430px|right]] | [[File:2015 AIME I 4.png|430px|right]] | ||
− | <math> AB = BD, BE = BC, \angle ABE = \angle CBD \implies \triangle ABE | + | <math> AB = BD, BE = BC, \angle ABE = \angle CBD \implies \triangle ABE \cong \triangle DBC</math> |
Medians are equal, so <math>MB = MN, \angle ABM = \angle DBN \implies</math> | Medians are equal, so <math>MB = MN, \angle ABM = \angle DBN \implies</math> |
Latest revision as of 23:12, 7 May 2024
Problem
Point lies on line segment with and . Points and lie on the same side of line forming equilateral triangles and . Let be the midpoint of , and be the midpoint of . The area of is . Find .
Diagram
Diagram by RedFireTruck (talk)
Solution 1
Let be the origin, so and Using equilateral triangle properties tells us that and as well. Therefore, and Applying the Shoelace Theorem to triangle gives
so
Solution 2
Note that and . Also, . Thus, by SAS.
From this, it is clear that a rotation about will map to . This rotation also maps to . Thus, and . Thus, is equilateral.
Using the Law of Cosines on , Thus, .
Using Stewart's Theorem on ,
Calculating the area of , Thus, , so . Our final answer is .
Admittedly, this is much more tedious than the coordinate solutions.
I also noticed that there are two more ways of showing that is equilateral:
One way is to show that , , and are related by a spiral similarity centered at .
The other way is to use the Mean Geometry Theorem. Note that and are similar and have the same orientation. Note that is the weighted average of and , is the weighted average of and , and is the weighted average of and . The weights are the same for all three averages. (The weights are actually just and , so these are also unweighted averages.) Thus, by the Mean Geometry Theorem, is similar to both and , which means that is equilateral.
Note: A much easier way to go about finding without having to use Stewart's Theorem is to simply drop the altitudes from M and E to AC, thus hitting AC at points X and Y. Then clearly AEY and AMX are similar with ratio 2. But we know that . Additionally, from similar triangles meaning we can now just do pythagorean theorem on right triangle to get - SuperJJ
Solution 3
Medians are equal, so
is equilateral triangle.
The height of is distance from to midpoint is
is the median of
The area of
vladimir.shelomovskii@gmail.com, vvsss
See Also
2015 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.