Difference between revisions of "2014 AMC 8 Problems/Problem 13"
(→Solution) |
(→Problem) |
||
Line 1: | Line 1: | ||
− | ==Problem== | + | ==Problem 13== |
If <math>n</math> and <math>m</math> are integers and <math>n^2+m^2</math> is even, which of the following is impossible? | If <math>n</math> and <math>m</math> are integers and <math>n^2+m^2</math> is even, which of the following is impossible? | ||
<math>\textbf{(A) }</math> <math>n</math> and <math>m</math> are even <math>\qquad\textbf{(B) }</math> <math>n</math> and <math>m</math> are odd <math>\qquad\textbf{(C) }</math> <math>n+m</math> is even <math>\qquad\textbf{(D) }</math> <math>n+m</math> is odd <math>\qquad \textbf{(E) }</math> none of these are impossible | <math>\textbf{(A) }</math> <math>n</math> and <math>m</math> are even <math>\qquad\textbf{(B) }</math> <math>n</math> and <math>m</math> are odd <math>\qquad\textbf{(C) }</math> <math>n+m</math> is even <math>\qquad\textbf{(D) }</math> <math>n+m</math> is odd <math>\qquad \textbf{(E) }</math> none of these are impossible | ||
− | |||
==Video Solution (CREATIVE THINKING)== | ==Video Solution (CREATIVE THINKING)== |
Revision as of 12:25, 17 June 2024
Contents
[hide]Problem 13
If and are integers and is even, which of the following is impossible?
and are even and are odd is even is odd none of these are impossible
Video Solution (CREATIVE THINKING)
~Education, the Study of Everything
Video Solution
https://www.youtube.com/watch?v=boXUIcEcAno ~David
https://youtu.be/_3n4f0v6B7I ~savannahsolver
Solution
Since is even, either both and are even, or they are both odd. Therefore, and are either both even or both odd, since the square of an even number is even and the square of an odd number is odd. As a result, must be even. The answer, then, is .
See Also
2014 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.