Difference between revisions of "1976 AHSME Problems/Problem 5"
(Created page with "=Problem 5== How many integers greater than <math>10</math> and less than <math>100</math>, written in base-<math>10</math> notation, are increased by <math>9</math> when thei...") |
Tecilis459 (talk | contribs) (Unify headers) |
||
(3 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
− | =Problem | + | == Problem == |
How many integers greater than <math>10</math> and less than <math>100</math>, written in base-<math>10</math> notation, are increased by <math>9</math> when their digits are reversed? | How many integers greater than <math>10</math> and less than <math>100</math>, written in base-<math>10</math> notation, are increased by <math>9</math> when their digits are reversed? | ||
<math>\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 8 \qquad \textbf{(D)}\ 9 \qquad \textbf{(E)}\ 10</math> | <math>\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 8 \qquad \textbf{(D)}\ 9 \qquad \textbf{(E)}\ 10</math> | ||
− | =Solution== | + | == Solution == |
− | Let our two digit number be <math>\overline{ab}</math>, where <math>a</math> is the tens digit, and <math>b</math> is the ones digit. So, <math>\overline{ab}=10a+b</math>. When we reverse our digits, it becomes <math>10b+a</math>. So, <math>10a+b+9=10b+a\implies a-b=1</math>. So, our numbers are <math>12, 23, 34, 45, 56, 67, 78, 89\Rightarrow \textbf{(C)}</math>. | + | Let our two digit number be <math>\overline{ab}</math>, where <math>a</math> is the tens digit, and <math>b</math> is the ones digit. So, <math>\overline{ab}=10a+b</math>. When we reverse our digits, it becomes <math>10b+a</math>. So, <math>10a+b+9=10b+a\implies a-b=1</math>. So, our numbers are <math>12, 23, 34, 45, 56, 67, 78, 89\Rightarrow \textbf{(C)}</math>.~MathJams |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
{{AHSME box|year=1976|before=[[1975 AHSME]]|after=[[1977 AHSME]]}} | {{AHSME box|year=1976|before=[[1975 AHSME]]|after=[[1977 AHSME]]}} |
Latest revision as of 12:36, 16 July 2024
Problem
How many integers greater than and less than , written in base- notation, are increased by when their digits are reversed?
Solution
Let our two digit number be , where is the tens digit, and is the ones digit. So, . When we reverse our digits, it becomes . So, . So, our numbers are .~MathJams
1976 AHSME (Problems • Answer Key • Resources) | ||
Preceded by 1975 AHSME |
Followed by 1977 AHSME | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |