Difference between revisions of "1959 AHSME Problems/Problem 33"

(yeah)
 
m (typo fix)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
Given HP = <math>3</math> <math>,</math> <math>4</math> <math>,</math> <math>6</math> \
+
== Problem ==
So, <math>\tfrac {1} {3}</math>,<math>\tfrac {1} {4}</math>,<math>\tfrac {1} {6}</math> are in <math>AP</math>. \
+
 
Then, common difference <math> (d) </math> <math>=</math> <math>\tfrac {1} {4}</math> <math>-</math> <math>\tfrac {1} {3}</math> <math>=</math> <math>\tfrac {1} {6}</math> <math>-</math> <math>\tfrac {1} {4}</math> <math>=</math> <math>-</math> <math>\tfrac {1} {12}</math> \
+
A harmonic progression is a sequence of numbers such that their reciprocals are in arithmetic progression.
Finding the fourth term of this <math>AP</math> <math>=</math> <math>\tfrac{1}{12}</math> by <math>AP</math> is trivial. \
+
Let <math>S_n</math> represent the sum of the first <math>n</math> terms of the harmonic progression; for example <math>S_3</math> represents the sum of
So, fourth term of Harmonic Progression <math>=</math> <math>12</math> <math>.</math> \
+
the first three terms. If the first three terms of a harmonic progression are <math>3,4,6</math>, then:
Now, <math>S_{4}</math> <math>=</math> <math>3</math> <math>+</math> <math>4</math> <math>+</math> <math>6</math> <math>+</math> <math>12</math> <math>=</math> <math>25</math> <math>(B)</math>
+
<math>\textbf{(A)}\ S_4=20 \qquad\textbf{(B)}\ S_4=25\qquad\textbf{(C)}\ S_5=49\qquad\textbf{(D)}\ S_6=49\qquad\textbf{(E)}\ S_2=\frac{1}2 S_4  </math>
 +
 
 +
== Solution ==
 +
 
 +
From the problem, we know that <math>\tfrac {1} {3}</math>,<math>\tfrac {1} {4}</math>,<math>\tfrac {1} {6}</math>, ... are in arithmetic progression.
 +
 
 +
Then, the common difference <math>d</math> of this arithmetic progression is <math>\tfrac {1} {4}</math> <math>-</math> <math>\tfrac {1} {3}</math> <math>=</math> <math>\tfrac {1} {6}</math> <math>-</math> <math>\tfrac {1} {4}</math> <math>=</math> <math>-</math> <math>\tfrac {1} {12}</math>
 +
 
 +
Thus, the fourth term of the arithmetic progression is <math>\tfrac{1}{12}</math>.
 +
 
 +
So, the fourth term of the harmonic progression is <math>12</math>.  
 +
 
 +
Now, we can see that <math>S_4</math> <math>=</math> <math>3</math> <math>+</math> <math>4</math> <math>+</math> <math>6</math> <math>+</math> <math>12</math> <math>=</math> <math>25</math>, which corresponds to answer <math>\fbox{\textbf{(B)}}</math>.
 +
 
 +
== See also ==
 +
{{AHSME 50p box|year=1959|num-b=32|num-a=34}}
 +
{{MAA Notice}}

Latest revision as of 14:42, 21 July 2024

Problem

A harmonic progression is a sequence of numbers such that their reciprocals are in arithmetic progression. Let $S_n$ represent the sum of the first $n$ terms of the harmonic progression; for example $S_3$ represents the sum of the first three terms. If the first three terms of a harmonic progression are $3,4,6$, then: $\textbf{(A)}\ S_4=20 \qquad\textbf{(B)}\ S_4=25\qquad\textbf{(C)}\ S_5=49\qquad\textbf{(D)}\ S_6=49\qquad\textbf{(E)}\ S_2=\frac{1}2 S_4$

Solution

From the problem, we know that $\tfrac {1} {3}$,$\tfrac {1} {4}$,$\tfrac {1} {6}$, ... are in arithmetic progression.

Then, the common difference $d$ of this arithmetic progression is $\tfrac {1} {4}$ $-$ $\tfrac {1} {3}$ $=$ $\tfrac {1} {6}$ $-$ $\tfrac {1} {4}$ $=$ $-$ $\tfrac {1} {12}$

Thus, the fourth term of the arithmetic progression is $\tfrac{1}{12}$.

So, the fourth term of the harmonic progression is $12$.

Now, we can see that $S_4$ $=$ $3$ $+$ $4$ $+$ $6$ $+$ $12$ $=$ $25$, which corresponds to answer $\fbox{\textbf{(B)}}$.

See also

1959 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 32
Followed by
Problem 34
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png