Difference between revisions of "1959 AHSME Problems/Problem 45"

(Add problem statement)
(Solution)
 
(2 intermediate revisions by the same user not shown)
Line 2: Line 2:
  
 
If <math>\left(\log_3 x\right)\left(\log_x 2x\right)\left( \log_{2x} y\right)=\log_{x}x^2</math>, then <math> y</math> equals:
 
If <math>\left(\log_3 x\right)\left(\log_x 2x\right)\left( \log_{2x} y\right)=\log_{x}x^2</math>, then <math> y</math> equals:
 +
 
<math>\textbf{(A)}\ \frac92\qquad\textbf{(B)}\ 9\qquad\textbf{(C)}\ 18\qquad\textbf{(D)}\ 27\qquad\textbf{(E)}\ 81  </math>
 
<math>\textbf{(A)}\ \frac92\qquad\textbf{(B)}\ 9\qquad\textbf{(C)}\ 18\qquad\textbf{(D)}\ 27\qquad\textbf{(E)}\ 81  </math>
 +
 +
== Solution ==
 +
From the properties of [[logarithms]], we can simplify the equation and solve for <math>y</math>:
 +
\begin{align*}
 +
(\log_3 x)(\log_x 2x)(\log_{2x} y) &= \log_{x}x^2 \
 +
(\log_3 2x)(\log_{2x} y) &= 2\log_x x \
 +
\log_3 y &= 2 \
 +
y &= 3^2 \
 +
y &= 9
 +
\end{align*}
 +
Thus, our answer is <math>\boxed{\textbf{(B) }9}</math>.
 +
 +
== See also ==
 +
{{AHSME 50p box|year=1959|num-b=44|num-a=46}}
 +
{{MAA Notice}}

Latest revision as of 11:41, 22 July 2024

Problem

If $\left(\log_3 x\right)\left(\log_x 2x\right)\left( \log_{2x} y\right)=\log_{x}x^2$, then $y$ equals:

$\textbf{(A)}\ \frac92\qquad\textbf{(B)}\ 9\qquad\textbf{(C)}\ 18\qquad\textbf{(D)}\ 27\qquad\textbf{(E)}\ 81$

Solution

From the properties of logarithms, we can simplify the equation and solve for $y$: (log3x)(logx2x)(log2xy)=logxx2(log32x)(log2xy)=2logxxlog3y=2y=32y=9 Thus, our answer is $\boxed{\textbf{(B) }9}$.

See also

1959 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 44
Followed by
Problem 46
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png