Difference between revisions of "1959 AHSME Problems/Problem 49"

(Added solution)
 
m (see also box)
 
Line 7: Line 7:
 
Notice that we can arrange the sequence like so: <cmath>11214+18116132+1641128=1585645512=1(i=158n)=157 (by the convergence of a geometric series)=27</cmath>
 
Notice that we can arrange the sequence like so: <cmath>11214+18116132+1641128=1585645512=1(i=158n)=157 (by the convergence of a geometric series)=27</cmath>
 
hence our answer is <math>\fbox{B}</math>
 
hence our answer is <math>\fbox{B}</math>
 +
 +
== See also ==
 +
 +
{{AHSME 50p box|year = 1959|num-b = 48|num-a = 50}}
 +
{{MAA Notice}}
 +
[[Category: AHSME]][[Category:AHSME Problems]]

Latest revision as of 12:06, 22 July 2024

Problem 49

For the infinite series $1-\frac12-\frac14+\frac18-\frac{1}{16}-\frac{1}{32}+\frac{1}{64}-\frac{1}{128}-\cdots$ let $S$ be the (limiting) sum. Then $S$ equals:

$\textbf{(A)}\ 0\qquad\textbf{(B)}\ \frac27\qquad\textbf{(C)}\ \frac67\qquad\textbf{(D)}\ \frac{9}{32}\qquad\textbf{(E)}\ \frac{27}{32}$

Solution

Notice that we can arrange the sequence like so: \begin{align*}1-\frac12-\frac14+\frac18-\frac{1}{16}-\frac{1}{32}+\frac{1}{64}-\frac{1}{128}-\cdots  &= 1-\frac{5}{8}-\frac{5}{64}-\frac{5}{512}-\dots \\ &= 1-\left(\sum_{i=1}^{\infty}\frac{5}{8^n}\right) \\ &= 1-\frac{5}{7} \text{ (by the convergence of a geometric series)} \\ &=\frac{2}{7}\end{align*} hence our answer is $\fbox{B}$

See also

1959 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 48
Followed by
Problem 50
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png