Difference between revisions of "2000 AMC 12 Problems/Problem 1"

 
m (Solution 1 (Verifying the Statement))
(26 intermediate revisions by 14 users not shown)
Line 1: Line 1:
obviously, the sum is the highest if two factors are the lowest!
+
{{duplicate|[[2000 AMC 12 Problems|2000 AMC 12 #1]] and [[2000 AMC 10 Problems|2000 AMC 10 #1]]}}
so 1*3*667=2001
+
 
and 1+3+667=671 that's it!
+
==Problem==
 +
 
 +
In the year <math>2001</math>, the United States will host the [[International Mathematical Olympiad]].  Let <math>I,M,</math> and <math>O</math> be distinct [[positive integer]]s such that the product <math>I \cdot M \cdot O = 2001 </math>.  What is the largest possible value of the sum <math>I + M + O</math>?
 +
 
 +
<math>\textbf{(A)}\ 23 \qquad \textbf{(B)}\ 55 \qquad \textbf{(C)}\ 99 \qquad \textbf{(D)}\ 111 \qquad \textbf{(E)}\ 671</math>
 +
 
 +
== Solution 1 (Verifying the Statement)==
 +
First, we need to recognize that a number is going to be largest only if, of the <math>3</math> [[factor]]s, two of them are small. If we want to make sure that this is correct, we could test with a smaller number, like <math>30</math>. It becomes much more clear that this is true, and in this situation, the value of <math>I + M + O</math> would be <math>18</math>. Now, we use this process on <math>2001</math> to get <math>667 * 3 * 1</math> as our <math>3</math> factors.
 +
Hence, we have <math>667 + 3 + 1 = \boxed{\text{(E) 671}}</math>.
 +
 
 +
~armang32324
 +
 
 +
== Solution 2==
 +
 
 +
The sum is the highest if two [[factor]]s are the lowest.
 +
 
 +
So, <math>1 \cdot 3 \cdot 667 = 2001</math> and <math>1+3+667=671 \Longrightarrow \boxed{\text{(E) 671}}</math>.
 +
 
 +
== Solution 3 (Answer Choices) ==
 +
 
 +
We see since <math>2 + 0 + 0 + 1</math> is divisible by <math>3</math>, we can eliminate all of the first <math>4</math> answer choices because they are way too small and get <math>\boxed{\text{(E) 671}}</math> as our final answer.
 +
 
 +
==Video Solution by Daily Dose of Math==
 +
 
 +
https://www.youtube.com/watch?v=aSzsStkkYeA
 +
 
 +
~Thesmartgreekmathdude
 +
 
 +
==See Also==
 +
 
 +
{{AMC12 box|year=2000|before=First<br />Question|num-a=2}}
 +
{{AMC10 box|year=2000|before=First<br />Question|num-a=2}}
 +
[[Category:Introductory Algebra Problems]]
 +
[[Category:Introductory Number Theory Problems]]
 +
{{MAA Notice}}

Revision as of 07:46, 23 July 2024

The following problem is from both the 2000 AMC 12 #1 and 2000 AMC 10 #1, so both problems redirect to this page.

Problem

In the year $2001$, the United States will host the International Mathematical Olympiad. Let $I,M,$ and $O$ be distinct positive integers such that the product $I \cdot M \cdot O = 2001$. What is the largest possible value of the sum $I + M + O$?

$\textbf{(A)}\ 23 \qquad \textbf{(B)}\ 55 \qquad \textbf{(C)}\ 99 \qquad \textbf{(D)}\ 111 \qquad \textbf{(E)}\ 671$

Solution 1 (Verifying the Statement)

First, we need to recognize that a number is going to be largest only if, of the $3$ factors, two of them are small. If we want to make sure that this is correct, we could test with a smaller number, like $30$. It becomes much more clear that this is true, and in this situation, the value of $I + M + O$ would be $18$. Now, we use this process on $2001$ to get $667 * 3 * 1$ as our $3$ factors. Hence, we have $667 + 3 + 1 = \boxed{\text{(E) 671}}$.

~armang32324

Solution 2

The sum is the highest if two factors are the lowest.

So, $1 \cdot 3 \cdot 667 = 2001$ and $1+3+667=671 \Longrightarrow \boxed{\text{(E) 671}}$.

Solution 3 (Answer Choices)

We see since $2 + 0 + 0 + 1$ is divisible by $3$, we can eliminate all of the first $4$ answer choices because they are way too small and get $\boxed{\text{(E) 671}}$ as our final answer.

Video Solution by Daily Dose of Math

https://www.youtube.com/watch?v=aSzsStkkYeA

~Thesmartgreekmathdude

See Also

2000 AMC 12 (ProblemsAnswer KeyResources)
Preceded by
First
Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2000 AMC 10 (ProblemsAnswer KeyResources)
Preceded by
First
Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png