Difference between revisions of "1957 AHSME Problems/Problem 26"

m
(diagram)
Line 11: Line 11:
  
 
== Solution ==
 
== Solution ==
 +
 +
<asy>
 +
 +
import geometry;
 +
 +
point A = (0,0);
 +
point B = (3,1);
 +
point C = (2,4);
 +
point P = (A+B+C)/3;
 +
 +
draw(A--B--C--A);
 +
dot(A);
 +
label("A",A,SW);
 +
dot(B);
 +
label("B",B,SE);
 +
dot(C);
 +
label("C",C,NW);
 +
dot(P);
 +
label("P",P,E);
 +
 +
draw(A--P);
 +
draw(B--P);
 +
draw(C--P);
 +
 +
</asy>
 +
 
<math>\fbox{\textbf{(E) }the intersection of the medians of the triangle}</math>.
 
<math>\fbox{\textbf{(E) }the intersection of the medians of the triangle}</math>.
  

Revision as of 14:42, 25 July 2024

Problem

From a point within a triangle, line segments are drawn to the vertices. A necessary and sufficient condition that the three triangles thus formed have equal areas is that the point be:

$\textbf{(A)}\ \text{the center of the inscribed circle} \qquad \\  \textbf{(B)}\ \text{the center of the circumscribed circle}\qquad\\  \textbf{(C)}\ \text{such that the three angles formed at the point each be }{120^\circ}\qquad\\  \textbf{(D)}\ \text{the intersection of the altitudes of the triangle}\qquad\\  \textbf{(E)}\ \text{the intersection of the medians of the triangle}$

Solution

[asy]  import geometry;  point A = (0,0); point B = (3,1); point C = (2,4); point P = (A+B+C)/3;  draw(A--B--C--A); dot(A); label("A",A,SW); dot(B); label("B",B,SE); dot(C); label("C",C,NW); dot(P); label("P",P,E);  draw(A--P); draw(B--P); draw(C--P);  [/asy]

$\fbox{\textbf{(E) }the intersection of the medians of the triangle}$.

See Also

1957 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 25
Followed by
Problem 27
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png