Difference between revisions of "Cubic Equation"
Vincentwant (talk | contribs) |
m (→The Cubic Formula) |
||
Line 46: | Line 46: | ||
<math>x = \sqrt[3]{u} - \sqrt[3]{v} - \frac{b}{3a}</math> where u and v are roots of the system <math>\begin{cases} uv = \frac{p^3}{27} \\ v - u = q \end{cases}</math>. | <math>x = \sqrt[3]{u} - \sqrt[3]{v} - \frac{b}{3a}</math> where u and v are roots of the system <math>\begin{cases} uv = \frac{p^3}{27} \\ v - u = q \end{cases}</math>. | ||
− | ==The Cubic | + | ==The [[Cubic formula]]== |
The cubic formula can be obtained by using the above method. These are the steps: | The cubic formula can be obtained by using the above method. These are the steps: | ||
Revision as of 15:36, 26 July 2024
A cubic equation is an equation of the form:
.
A cubic equation has 3 roots, either all real OR one real, two complex.
Contents
Solving Cubic Equations
If you're too lazy to follow, look at subsection "TLDR" for each section.
Converting to a Depressed Equation
You start with the equation .
Divide both sides by a: .
Now we change the coefficient of to (e.g. change it to a depressed cubic). We do this by substituting , giving:
.
is and is , so now we have .
TLDR?
The equation is where and .
Solving the Depressed Equation
Now here comes the smart part. Substitute .
The equation becomes . Simplification:
We want that last term to equal , so we can set . (We can't use , because then , which is not necessarily true.) Solving this equation gives us . If , then . We now have a system of equations:
.
We can solve this via the quadratic formula. After and are obtained, we have and .
TLDR?
where u and v are roots of the system .
The Cubic formula
The cubic formula can be obtained by using the above method. These are the steps:
The depressed cubic is of the form .
and are the roots of the system of equations . We can solve this by substitution:
(We are still using p and q because they might get a little messy if we use p and q in terms of a, b, c, and d.)
(comes from )
(See? I told you it would be messy.) I'm not going to simplify all that squaring and cubing right now: maybe soon! Also, if you select for the first equation and for the second (or vice versa--they lead to the same number), you will always get a real number.
One last piece of advice: Don't try to memorize this. Memorize the process (shortcut: just look at TLDR for each section). Here is another way to do it.
If you're just asking for the formula for a monic cubic...
Here is the formula for :
If you're asking for the formula for a depressed monic cubic...
Here is the formula for :