Difference between revisions of "1957 AHSME Problems/Problem 46"
(created solution page) |
(diagram) |
||
Line 10: | Line 10: | ||
== Solution == | == Solution == | ||
+ | <asy> | ||
+ | |||
+ | import geometry; | ||
+ | |||
+ | point A = (0,0); | ||
+ | point B = (6,3); | ||
+ | point C = (8,0); | ||
+ | point D, P; | ||
+ | |||
+ | circle c = circumcircle(A,B,C); | ||
+ | |||
+ | // Triangle ABC w/ Circumcircle | ||
+ | draw(triangle(A,B,C)); | ||
+ | dot(A); | ||
+ | label("A",A,W); | ||
+ | dot(B); | ||
+ | label("B",B,N); | ||
+ | dot(C); | ||
+ | label("C",C,E); | ||
+ | draw(c); | ||
+ | |||
+ | // Segment BD, Triangle ADC | ||
+ | pair[] d = intersectionpoints(perpendicular(B,line(A,C)),c); | ||
+ | D = d[0]; | ||
+ | dot(D); | ||
+ | label("D",D,S); | ||
+ | draw(B--D); | ||
+ | draw(triangle(A,D,C)); | ||
+ | |||
+ | pair[] p = intersectionpoints(B--D,A--C); | ||
+ | P = p[0]; | ||
+ | dot(P); | ||
+ | label("P",P,SW); | ||
+ | |||
+ | // Right angle mark | ||
+ | markscalefactor = 0.0577; | ||
+ | draw(rightanglemark(A,P,B)); | ||
+ | |||
+ | // Length Labels | ||
+ | label("$3$", midpoint(B--P), W); | ||
+ | label("$4$", midpoint(P--D), W); | ||
+ | label("$6$", midpoint(A--P), S); | ||
+ | label("$2$", midpoint(P--C), S); | ||
+ | |||
+ | </asy> | ||
+ | |||
<math>\boxed{\textbf{(E) }\sqrt{65}}</math>. | <math>\boxed{\textbf{(E) }\sqrt{65}}</math>. | ||
Revision as of 11:31, 27 July 2024
Problem
Two perpendicular chords intersect in a circle. The segments of one chord are and ; the segments of the other are and . Then the diameter of the circle is:
Solution
.
See Also
1957 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 45 |
Followed by Problem 47 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.