Difference between revisions of "1957 AHSME Problems/Problem 46"

(created solution page)
 
(diagram)
Line 10: Line 10:
  
 
== Solution ==
 
== Solution ==
 +
<asy>
 +
 +
import geometry;
 +
 +
point A = (0,0);
 +
point B = (6,3);
 +
point C = (8,0);
 +
point D, P;
 +
 +
circle c = circumcircle(A,B,C);
 +
 +
// Triangle ABC w/ Circumcircle
 +
draw(triangle(A,B,C));
 +
dot(A);
 +
label("A",A,W);
 +
dot(B);
 +
label("B",B,N);
 +
dot(C);
 +
label("C",C,E);
 +
draw(c);
 +
 +
// Segment BD, Triangle ADC
 +
pair[] d = intersectionpoints(perpendicular(B,line(A,C)),c);
 +
D = d[0];
 +
dot(D);
 +
label("D",D,S);
 +
draw(B--D);
 +
draw(triangle(A,D,C));
 +
 +
pair[] p = intersectionpoints(B--D,A--C);
 +
P = p[0];
 +
dot(P);
 +
label("P",P,SW);
 +
 +
// Right angle mark
 +
markscalefactor = 0.0577;
 +
draw(rightanglemark(A,P,B));
 +
 +
// Length Labels
 +
label("$3$", midpoint(B--P), W);
 +
label("$4$", midpoint(P--D), W);
 +
label("$6$", midpoint(A--P), S);
 +
label("$2$", midpoint(P--C), S);
 +
 +
</asy>
 +
 
<math>\boxed{\textbf{(E) }\sqrt{65}}</math>.
 
<math>\boxed{\textbf{(E) }\sqrt{65}}</math>.
  

Revision as of 11:31, 27 July 2024

Problem

Two perpendicular chords intersect in a circle. The segments of one chord are $3$ and $4$; the segments of the other are $6$ and $2$. Then the diameter of the circle is:

$\textbf{(A)}\ \sqrt{89}\qquad  \textbf{(B)}\ \sqrt{56}\qquad  \textbf{(C)}\ \sqrt{61}\qquad  \textbf{(D)}\ \sqrt{75}\qquad \textbf{(E)}\ \sqrt{65}$

Solution

[asy]  import geometry;  point A = (0,0); point B = (6,3); point C = (8,0); point D, P;  circle c = circumcircle(A,B,C);  // Triangle ABC w/ Circumcircle draw(triangle(A,B,C)); dot(A); label("A",A,W); dot(B); label("B",B,N); dot(C); label("C",C,E); draw(c);  // Segment BD, Triangle ADC pair[] d = intersectionpoints(perpendicular(B,line(A,C)),c); D = d[0]; dot(D); label("D",D,S); draw(B--D); draw(triangle(A,D,C));  pair[] p = intersectionpoints(B--D,A--C); P = p[0]; dot(P); label("P",P,SW);  // Right angle mark markscalefactor = 0.0577; draw(rightanglemark(A,P,B));  // Length Labels label("$3$", midpoint(B--P), W); label("$4$", midpoint(P--D), W); label("$6$", midpoint(A--P), S); label("$2$", midpoint(P--C), S);  [/asy]

$\boxed{\textbf{(E) }\sqrt{65}}$.

See Also

1957 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 45
Followed by
Problem 47
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png