Difference between revisions of "1957 AHSME Problems/Problem 46"

(created solution page)
 
 
(2 intermediate revisions by the same user not shown)
Line 9: Line 9:
 
\textbf{(E)}\ \sqrt{65} </math>   
 
\textbf{(E)}\ \sqrt{65} </math>   
  
== Solution ==
+
== Solution 1 ==
<math>\boxed{\textbf{(E) }\sqrt{65}}</math>.
+
<asy>
 +
 
 +
import geometry;
 +
 
 +
point A = (0,0);
 +
point B = (6,3);
 +
point C = (8,0);
 +
point D, P;
 +
 
 +
circle c = circumcircle(A,B,C);
 +
 
 +
// Triangle ABC w/ Circumcircle
 +
draw(triangle(A,B,C));
 +
dot(A);
 +
label("A",A,W);
 +
dot(B);
 +
label("B",B,N);
 +
dot(C);
 +
label("C",C,E);
 +
draw(c);
 +
 
 +
// Segment BD, Triangle ADC
 +
pair[] d = intersectionpoints(perpendicular(B,line(A,C)),c);
 +
D = d[0];
 +
dot(D);
 +
label("D",D,S);
 +
draw(B--D);
 +
draw(triangle(A,D,C));
 +
 
 +
pair[] p = intersectionpoints(B--D,A--C);
 +
P = p[0];
 +
dot(P);
 +
label("P",P,SW);
 +
 
 +
// Right angle mark
 +
markscalefactor = 0.0577;
 +
draw(rightanglemark(A,P,B));
 +
 
 +
// Length Labels
 +
label("$3$", midpoint(B--P), W);
 +
label("$4$", midpoint(P--D), W);
 +
label("$6$", midpoint(A--P), S);
 +
label("$2$", midpoint(P--C), S);
 +
 
 +
</asy>
 +
 
 +
Let the chords intersect the circle at points <math>A,B,C,</math> and <math>D</math> to form simple polygon <math>ABCD</math>. Further, let the chords intersect at point <math>P</math> with <math>AP=6,PC=2,BP=3,</math> and <math>PD=4</math>, as in the diagram. Then, because <math>\overline{AC} \perp \overline{BD}</math>, by the [[Pythagorean Theorem]], <math>AB=3\sqrt5</math> and <math>BC=\sqrt{13}</math>. Because a circle is determined by three coplanar points, the [[circumcircle]] of <math>\triangle ABC</math> will be the circumcircle of <math>ABCD</math>, so the circumdiameter of <math>\triangle ABC</math> will be our desired answer. We know that <math>[\triangle ABC]=\tfrac{(6+2) \cdot 3}2=12</math>. Furthermore, we know that we can express this area as <math>\tfrac{abc}{4R}</math>, where <math>a,b,</math> and <math>c</math> are <math>\triangle ABC</math>'s side lengths and <math>R</math> is its circumradius. Setting this expression equal to <math>12</math>, we can now solve for <math>R</math>:
 +
\begin{align*}
 +
\frac{abc}{4R} &= 12 \\
 +
\frac{\sqrt{13} \cdot 8 \cdot 3\sqrt{15}}{4R} &= 12 \\
 +
\frac{2 \cdot 3\sqrt{65}}R &= 12 \\
 +
6\sqrt{65} &= 12R \\
 +
R &= \frac{\sqrt{65}} 2
 +
\end{align*}
 +
Because the problem asks for the diameter of the circle, our answer is <math>2R=2 \cdot \frac{\sqrt{65}}2=\boxed{\textbf{(E) }\sqrt{65}}</math>.
 +
 
 +
== Solution 2 (Answer choices, intution) ==
 +
Because one of the chords decribed in the problem has length <math>6+2=8</math>, we know that the diameter, the largest chord in the circle, must have a length <math>\geq 8</math>. This fact eliminates options (B) and (C). Furthermore, because the chord of length <math>8</math> is close to bisecting the other perpendicular chord (being only <math>0.5</math> off of its midpoint), it should be rather close to the length of the diameter. Because the circle's tangent lines are perpendicular to the diameter, moving a small distance away from the diameter will not rapidly decrease the length of the chord, so <math>AC</math> is only slightly less than the diameter's length. This fact guides us towards answer <math>\boxed{\textbf{(E) }\sqrt{65}}</math>.
  
 
== See Also ==
 
== See Also ==

Latest revision as of 12:54, 27 July 2024

Problem

Two perpendicular chords intersect in a circle. The segments of one chord are $3$ and $4$; the segments of the other are $6$ and $2$. Then the diameter of the circle is:

$\textbf{(A)}\ \sqrt{89}\qquad  \textbf{(B)}\ \sqrt{56}\qquad  \textbf{(C)}\ \sqrt{61}\qquad  \textbf{(D)}\ \sqrt{75}\qquad \textbf{(E)}\ \sqrt{65}$

Solution 1

[asy]  import geometry;  point A = (0,0); point B = (6,3); point C = (8,0); point D, P;  circle c = circumcircle(A,B,C);  // Triangle ABC w/ Circumcircle draw(triangle(A,B,C)); dot(A); label("A",A,W); dot(B); label("B",B,N); dot(C); label("C",C,E); draw(c);  // Segment BD, Triangle ADC pair[] d = intersectionpoints(perpendicular(B,line(A,C)),c); D = d[0]; dot(D); label("D",D,S); draw(B--D); draw(triangle(A,D,C));  pair[] p = intersectionpoints(B--D,A--C); P = p[0]; dot(P); label("P",P,SW);  // Right angle mark markscalefactor = 0.0577; draw(rightanglemark(A,P,B));  // Length Labels label("$3$", midpoint(B--P), W); label("$4$", midpoint(P--D), W); label("$6$", midpoint(A--P), S); label("$2$", midpoint(P--C), S);  [/asy]

Let the chords intersect the circle at points $A,B,C,$ and $D$ to form simple polygon $ABCD$. Further, let the chords intersect at point $P$ with $AP=6,PC=2,BP=3,$ and $PD=4$, as in the diagram. Then, because $\overline{AC} \perp \overline{BD}$, by the Pythagorean Theorem, $AB=3\sqrt5$ and $BC=\sqrt{13}$. Because a circle is determined by three coplanar points, the circumcircle of $\triangle ABC$ will be the circumcircle of $ABCD$, so the circumdiameter of $\triangle ABC$ will be our desired answer. We know that $[\triangle ABC]=\tfrac{(6+2) \cdot 3}2=12$. Furthermore, we know that we can express this area as $\tfrac{abc}{4R}$, where $a,b,$ and $c$ are $\triangle ABC$'s side lengths and $R$ is its circumradius. Setting this expression equal to $12$, we can now solve for $R$: \begin{align*} \frac{abc}{4R} &= 12 \\ \frac{\sqrt{13} \cdot 8 \cdot 3\sqrt{15}}{4R} &= 12 \\ \frac{2 \cdot 3\sqrt{65}}R &= 12 \\ 6\sqrt{65} &= 12R \\ R &= \frac{\sqrt{65}} 2 \end{align*} Because the problem asks for the diameter of the circle, our answer is $2R=2 \cdot \frac{\sqrt{65}}2=\boxed{\textbf{(E) }\sqrt{65}}$.

Solution 2 (Answer choices, intution)

Because one of the chords decribed in the problem has length $6+2=8$, we know that the diameter, the largest chord in the circle, must have a length $\geq 8$. This fact eliminates options (B) and (C). Furthermore, because the chord of length $8$ is close to bisecting the other perpendicular chord (being only $0.5$ off of its midpoint), it should be rather close to the length of the diameter. Because the circle's tangent lines are perpendicular to the diameter, moving a small distance away from the diameter will not rapidly decrease the length of the chord, so $AC$ is only slightly less than the diameter's length. This fact guides us towards answer $\boxed{\textbf{(E) }\sqrt{65}}$.

See Also

1957 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 45
Followed by
Problem 47
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png