Difference between revisions of "1971 AHSME Problems/Problem 22"

(created solution page)
 
(Solution)
 
Line 8: Line 8:
 
\textbf{(E) }1    </math>
 
\textbf{(E) }1    </math>
  
== Solution ==
+
== Solution 1 ==
<math>\boxed{\textbf{(A) }4}</math>.
+
Expanding the given expression yields <math>1+w-w^2-w-w^2+w^3+w^2+w^3-w^4=1-w^2+2w^3-w^4</math>. Recalling that <math>w^3=1</math>, we see that this expression equals <math>1-w^2+2-w=4-(1+w+w^2)</math>. By the properties of [[roots of unity]] <math>\neq 1</math>, <math>w^2+w+1=0</math>, so the given expression equals <math>\boxed{\textbf{(A) }4}</math>.
 +
 
 +
== Solution 2 (not recommended) ==
 +
Suppose <math>w=e^{i\tfrac{2\pi}3}=\cos(\tfrac{2\pi}3)+i\sin(\tfrac{2\pi}3) = \tfrac{-1+i\sqrt3}2</math>. Substituting this into the given expression, we can calculate the result:
 +
\begin{align*}
 +
(1-w+w^2)(1+w-w^2) &= (1-\frac{-1+i\sqrt3}2+(\frac{-1+i\sqrt3}2)^2)(1+\frac{-1+i\sqrt3}2-(\frac{-1+i\sqrt3}2)^2) \\
 +
&= (1-\frac{-1+i\sqrt3}{2}+\frac{1-3-2i\sqrt3}{4})(1+\frac{-1+i\sqrt3}2-\frac{1-3-2i\sqrt3}{4}) \\
 +
&= (1-\frac{-1+i\sqrt3}{2}+\frac{-1-i\sqrt3}{2})(1+\frac{-1+i\sqrt3}2-\frac{-1-i\sqrt3}{2}) \\
 +
&= (1-2(\frac{i\sqrt3}2))(1+2(\frac{i\sqrt3}2)) \\
 +
&= 1^2-(i\sqrt3)^2 \\
 +
&= 1+3 \\
 +
&= 4
 +
\end{align*}
 +
Thus, our answer is <math>\boxed{\textbf{(A) }4}</math>.
  
 
== See Also ==
 
== See Also ==
 
{{AHSME 35p box|year=1971|num-b=21|num-a=23}}
 
{{AHSME 35p box|year=1971|num-b=21|num-a=23}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 10:27, 5 August 2024

Problem

If $w$ is one of the imaginary roots of the equation $x^3=1$, then the product $(1-w+w^2)(1+w-w^2)$ is equal to

$\textbf{(A) }4\qquad \textbf{(B) }w\qquad \textbf{(C) }2\qquad \textbf{(D) }w^2\qquad  \textbf{(E) }1$

Solution 1

Expanding the given expression yields $1+w-w^2-w-w^2+w^3+w^2+w^3-w^4=1-w^2+2w^3-w^4$. Recalling that $w^3=1$, we see that this expression equals $1-w^2+2-w=4-(1+w+w^2)$. By the properties of roots of unity $\neq 1$, $w^2+w+1=0$, so the given expression equals $\boxed{\textbf{(A) }4}$.

Solution 2 (not recommended)

Suppose $w=e^{i\tfrac{2\pi}3}=\cos(\tfrac{2\pi}3)+i\sin(\tfrac{2\pi}3) = \tfrac{-1+i\sqrt3}2$. Substituting this into the given expression, we can calculate the result: \begin{align*} (1-w+w^2)(1+w-w^2) &= (1-\frac{-1+i\sqrt3}2+(\frac{-1+i\sqrt3}2)^2)(1+\frac{-1+i\sqrt3}2-(\frac{-1+i\sqrt3}2)^2) \\ &= (1-\frac{-1+i\sqrt3}{2}+\frac{1-3-2i\sqrt3}{4})(1+\frac{-1+i\sqrt3}2-\frac{1-3-2i\sqrt3}{4}) \\ &= (1-\frac{-1+i\sqrt3}{2}+\frac{-1-i\sqrt3}{2})(1+\frac{-1+i\sqrt3}2-\frac{-1-i\sqrt3}{2}) \\ &= (1-2(\frac{i\sqrt3}2))(1+2(\frac{i\sqrt3}2)) \\ &= 1^2-(i\sqrt3)^2 \\ &= 1+3 \\ &= 4 \end{align*} Thus, our answer is $\boxed{\textbf{(A) }4}$.

See Also

1971 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png