Difference between revisions of "2018 AMC 10B Problems/Problem 17"

(Solution 1)
 
(One intermediate revision by one other user not shown)
Line 4: Line 4:
  
 
<math>\textbf{(A) } 1 \qquad \textbf{(B) } 7 \qquad \textbf{(C) } 21 \qquad \textbf{(D) } 92 \qquad \textbf{(E) } 106</math>
 
<math>\textbf{(A) } 1 \qquad \textbf{(B) } 7 \qquad \textbf{(C) } 21 \qquad \textbf{(D) } 92 \qquad \textbf{(E) } 106</math>
 
==Diagram==
 
import olympiad;
 
\begin{figure}[!ht]
 
\centering
 
\resizebox{1\textwidth}{!}{%
 
\begin{circuitikz}
 
\tikzstyle{every node}=[font=\LARGE]
 
\draw [](3.75,15.5) to[short] (13.75,15.5);
 
\draw [](13.75,15.5) to[short] (13.75,10.75);
 
\draw [](3.75,15.5) to[short] (3.75,10.75);
 
\draw [](3.75,10.75) to[short] (13.75,10.75);
 
\node [font=\LARGE] at (3.5,15.75) {P};
 
\node [font=\LARGE] at (14,15.75) {Q};
 
\node [font=\LARGE] at (14.25,10.25) {R};
 
\node [font=\LARGE] at (3.5,10.25) {S};
 
\node [font=\LARGE] at (14.25,13) {6};
 
\node [font=\LARGE] at (8.75,15.75) {8};
 
\node [font=\LARGE] at (14.5,14) {C};
 
\node [font=\LARGE] at (14.25,11.5) {D};
 
\node [font=\LARGE] at (11.5,9.75) {E};
 
\node [font=\LARGE] at (13.75,11.75) {.};
 
\node [font=\LARGE] at (6.25,10.75) {.};
 
\node [font=\LARGE] at (13.75,14.25) {.};
 
\node [font=\LARGE] at (7,15.5) {.};
 
\node [font=\LARGE] at (11.25,15.5) {.};
 
\node [font=\LARGE] at (7,15.75) {A};
 
\node [font=\LARGE] at (11.25,15.75) {B};
 
\node [font=\LARGE] at (6.25,10) {F};
 
\node [font=\LARGE] at (3.75,11.75) {.};
 
\node [font=\LARGE] at (3.75,14.5) {.};
 
\node [font=\LARGE] at (3.25,14.25) {G};
 
\node [font=\LARGE] at (3.25,11.5) {H};
 
\draw [, line width=0.8pt](7,15.5) to[short] (11.25,15.5);
 
\draw [line width=0.8pt, short] (11.25,15.5) .. controls (12.5,15) and (12.5,15) .. (13.75,14.25);
 
\draw [line width=0.8pt, short] (13.75,14.5) .. controls (13.75,13.25) and (13.75,13.25) .. (13.75,11.75);
 
\draw [line width=0.8pt, short] (13.75,11.75) .. controls (12.75,11.25) and (12.75,11.25) .. (11.5,10.75);
 
\draw [line width=0.8pt, short] (11.5,10.75) .. controls (9,10.75) and (9,10.75) .. (6.25,10.75);
 
\draw [line width=0.8pt, short] (6.25,10.75) .. controls (5,11.25) and (5,11.25) .. (3.75,11.75);
 
\draw [line width=0.8pt, short] (3.75,12) .. controls (3.75,13.25) and (3.75,13.25) .. (3.75,14.5);
 
\draw [line width=0.8pt, short] (3.75,14.5) .. controls (5.5,15) and (5.5,15) .. (7,15.5);
 
\draw [line width=0.8pt, short] (5,15) .. controls (5.25,15) and (5.25,15) .. (5.25,14.75);
 
\draw [line width=0.8pt, short] (8.75,15.75) .. controls (8.75,15.5) and (8.75,15.5) .. (8.75,15.25);
 
\draw [line width=0.8pt, short] (12.75,15) .. controls (12.75,15) and (12.75,15) .. (12.5,14.75);
 
\draw [line width=0.8pt, short] (13.5,13) .. controls (13.75,13) and (13.75,13) .. (14,13);
 
\draw [line width=0.8pt, short] (12.5,11.5) .. controls (12.75,11.25) and (12.75,11.25) .. (13,11);
 
\draw [line width=0.8pt, short] (9,11) .. controls (9,10.75) and (9,10.75) .. (9,10.5);
 
\draw [line width=0.8pt, short] (5.25,11.5) .. controls (5,11.25) and (5,11.25) .. (4.75,11);
 
\draw [line width=0.8pt, short] (5,15) .. controls (5.25,14.75) and (5.25,14.75) .. (5.5,14.5);
 
\draw [line width=0.8pt, short] (12.75,15) .. controls (12.5,14.75) and (12.5,14.75) .. (12.25,14.5);
 
\end{circuitikz}
 
}%
 
 
\label{fig:my_label}
 
\end{figure}
 
 
~MC_ADe
 
  
 
== Solution 1==
 
== Solution 1==
Line 68: Line 11:
 
Now notice that since <math>CD=8-2x</math> we have <math>QC=DR=x-1</math>.
 
Now notice that since <math>CD=8-2x</math> we have <math>QC=DR=x-1</math>.
  
Thus by the Pythagorean Theorem we have <math>x^2+(x-1)^2=(8-2x)^2</math> which becomes <math>2x^2-30x+63=0\implies x=\dfrac{15-3\sqrt{11}}{2}</math>.
+
Thus by the Pythagorean Theorem we have <math>x^2+(x-1)^2=(8-2x)^2</math> which becomes <math>2x^2-30x+63=0\implies x=\dfrac{15-3\sqrt{11}}{2}</math>
  
 
Our answer is <math>8-(15-3\sqrt{11})=3\sqrt{11}-7\implies \boxed{\text{(B)}~7}</math>. (Mudkipswims42)
 
Our answer is <math>8-(15-3\sqrt{11})=3\sqrt{11}-7\implies \boxed{\text{(B)}~7}</math>. (Mudkipswims42)

Latest revision as of 19:37, 2 September 2024

Problem

In rectangle $PQRS$, $PQ=8$ and $QR=6$. Points $A$ and $B$ lie on $\overline{PQ}$, points $C$ and $D$ lie on $\overline{QR}$, points $E$ and $F$ lie on $\overline{RS}$, and points $G$ and $H$ lie on $\overline{SP}$ so that $AP=BQ<4$ and the convex octagon $ABCDEFGH$ is equilateral. The length of a side of this octagon can be expressed in the form $k+m\sqrt{n}$, where $k$, $m$, and $n$ are integers and $n$ is not divisible by the square of any prime. What is $k+m+n$?

$\textbf{(A) } 1 \qquad \textbf{(B) } 7 \qquad \textbf{(C) } 21 \qquad \textbf{(D) } 92 \qquad \textbf{(E) } 106$

Solution 1

Let $AP=BQ=x$. Then $AB=8-2x$.

Now notice that since $CD=8-2x$ we have $QC=DR=x-1$.

Thus by the Pythagorean Theorem we have $x^2+(x-1)^2=(8-2x)^2$ which becomes $2x^2-30x+63=0\implies x=\dfrac{15-3\sqrt{11}}{2}$

Our answer is $8-(15-3\sqrt{11})=3\sqrt{11}-7\implies \boxed{\text{(B)}~7}$. (Mudkipswims42)

Solution 2

Denote the length of the equilateral octagon as $x$. The length of $\overline{BQ}$ can be expressed as $\frac{8-x}{2}$. By the Pythagorean Theorem, we find that: \[\left(\frac{8-x}{2}\right)^2+\overline{CQ}^2=x^2\implies \overline{CQ}=\sqrt{x^2-\left(\frac{8-x}{2}\right)^2}\] Since $\overline{CQ}=\overline{DR}$, we can say that $x+2\sqrt{x^2-\left(\frac{8-x}{2}\right)^2}=6\implies x=-7\pm3\sqrt{11}$. We can discard the negative solution, so $k+m+n=-7+3+11=\boxed{\textbf{(B) }7}$ ~ blitzkrieg21

Solution 3

Let the octagon's side length be $x$. Then $PH = \frac{6 - x}{2}$ and $PA = \frac{8 - x}{2}$. By the Pythagorean theorem, $PH^2 + PA^2 = HA^2$, so $\left(\frac{6 - x}{2} \right)^2 + \left(\frac{8 - x}{2} \right)^2 = x^2$. By expanding the left side and combining the like terms, we get $\frac{x^2}{2} - 7x + 25 = x^2 \implies -\frac{x^2}{2} - 7x + 25 = 0$. Solving this using the quadratic formula, $\frac{-b \pm \sqrt{b^2-4ac}}{2a}$, we use $a = -\frac{1}{2}$, $b = -7$, and $c = 25$, to get one positive solution, $x=-7+3\sqrt{11}$, so $k+m+n=-7+3+11=\boxed{\textbf{(B) }7}$

Solution 4

Let $AB$, or the side of the octagon, be $x$. Then, $BQ = \left(\frac{8-x}{2}\right)$ and $CQ = \left(\frac{6-x}{2}\right)$. By the Pythagorean Theorem, $BQ^2+CQ^2=x^2$, or $\left(\frac{8-x}{2}\right)^2+\left(\frac{6-x}{2}\right)^2 = x^2$. Multiplying this out, we have $x^2 = \frac{64-16x+x^2+36-12x+x^2}{4}$. Simplifying, $-2x^2-28x+100=0$. Dividing both sides by $-2$ gives $x^2+14x-50=0$. Therefore, using the quadratic formula, we have $x=-7 \pm 3\sqrt{11}$. Since lengths are always positive, then $x=-7+3\sqrt{11} \Rightarrow k+m+n=-7+3+11=\boxed{\textbf{(B)}\ 7}$

~MrThinker

Video Solution

https://youtu.be/8sts_hn7cpQ

~IceMatrix

See Also

2018 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png