Difference between revisions of "2003 AIME I Problems/Problem 10"

(Solution 4)
(Add protractor solution (which I used back in 2003))
 
(12 intermediate revisions by 8 users not shown)
Line 50: Line 50:
 
<cmath>\frac{1}{2} \cos (7^\circ - \theta )= \sin 7^\circ \sin \theta</cmath>
 
<cmath>\frac{1}{2} \cos (7^\circ - \theta )= \sin 7^\circ \sin \theta</cmath>
  
and multiplying through by 2 and applying the [[double angle formula]] gives
+
and multiplying through by 2 and applying the [https://artofproblemsolving.com/wiki/index.php/Trigonometric_identities#Double-angle_identities| double angle formulas] gives
  
 
<cmath>\cos 7^\circ\cos\theta + \sin7^\circ\sin\theta = 2 \sin7^\circ \sin\theta</cmath>
 
<cmath>\cos 7^\circ\cos\theta + \sin7^\circ\sin\theta = 2 \sin7^\circ \sin\theta</cmath>
  
and so <math>\cos 7^\circ \cos \theta = \sin 7^\circ \sin\theta \Longleftrightarrow \tan 7^{\circ} = \cot \theta</math>; since <math>0^\circ < \theta < 180^\circ</math>, we must have <math>\theta = 83^\circ</math>, so the answer is <math>\boxed{083}</math>.
+
and so <math>\cos 7^\circ \cos \theta = \sin 7^\circ \sin\theta \Longleftrightarrow \tan 7^{\circ} = \cot \theta</math>; since <math>0^\circ < \theta < 180^\circ</math>, we must have <math>\theta = 83^\circ</math>, so the answer is <math>\boxed{83}</math>.
  
 
=== Solution 3 ===
 
=== Solution 3 ===
Line 62: Line 62:
  
 
=== Solution 4 ===
 
=== Solution 4 ===
Note: A diagram would be much appreciated; I cannot make one since I'm bad at asymptote.
+
Note: A diagram would be much appreciated; I cannot make one since I'm bad at asymptote. Also, please make this less cluttered :) ~tauros
  
First, take point <math>E</math> outside of <math>\triangle{ABC}</math> so that <math>\triangle{CEB}</math> is equilateral. Then, connect <math>A</math>, <math>C</math>, and <math>M</math> to <math>E</math>. Also, let <math>ME</math>
+
First, take point <math>E</math> outside of <math>\triangle{ABC}</math> so that <math>\triangle{CEB}</math> is equilateral. Then, connect <math>A</math>, <math>C</math>, and <math>M</math> to <math>E</math>. Also, let <math>ME</math> intersect <math>AB</math> at <math>F</math>. <math>\angle{MCE} = 83^\circ - 60^\circ = 23^\circ</math>, <math>CE = AB</math>, and (trivially) <math>CM = CM</math>, so <math>\triangle{MCE} \cong  
intersect <math>AB</math> at <math>F</math>. <math>\angle{MCE} = 83^\circ - 60^\circ = 23^\circ</math>, <math>CE = AB</math>, and (trivially) <math>CM = CM</math>, so <math>\triangle{MCE} \cong  
 
 
\triangle{MCA}</math> by SAS congruence. Also, <math>\angle{CMA} = \angle{CME} = 150^\circ</math>, so <math>\angle{AME} = 60^\circ</math>, and <math>AM = ME</math>,
 
\triangle{MCA}</math> by SAS congruence. Also, <math>\angle{CMA} = \angle{CME} = 150^\circ</math>, so <math>\angle{AME} = 60^\circ</math>, and <math>AM = ME</math>,
 
+
making <math>\triangle{AME}</math> also equilateral. (it is isosceles with a <math>60^\circ</math> angle) <math>\triangle{MAF} \cong \triangle{EAF}</math> by SAS (<math>MA = AE</math>,  
making <math>\triangle{AME}</math> also equilateral. (it is isosceles with a <math>60^\circ</math> angle). <math>\triangle{MAF} \cong \triangle{EAF}</math> by SAS (<math>MA = AE</math>,  
 
 
<math>AF = AF</math>, and <math>m\angle{MAF} = m\angle{EAF} = 30^\circ</math>), and <math>\triangle{MAB} \cong \triangle{EAB}</math> by SAS (<math>MA = AE</math>, <math>AB = AB</math>, and  
 
<math>AF = AF</math>, and <math>m\angle{MAF} = m\angle{EAF} = 30^\circ</math>), and <math>\triangle{MAB} \cong \triangle{EAB}</math> by SAS (<math>MA = AE</math>, <math>AB = AB</math>, and  
 
<math>m\angle{MAB} = m\angle{EAB} = 30^\circ</math>). Thus, <math>\triangle{BME}</math> is isosceles, with <math>m\angle{BME} = m\angle{BEM} = 60^\circ + 7^\circ = 67^\circ</math>. Also, <math>\angle{EMB} + \angle {CMB} = \angle{CME} = 150^\circ</math>, so <math>\angle{CME} = 150^\circ - 67^\circ  = \boxed{83^\circ}</math>.
 
<math>m\angle{MAB} = m\angle{EAB} = 30^\circ</math>). Thus, <math>\triangle{BME}</math> is isosceles, with <math>m\angle{BME} = m\angle{BEM} = 60^\circ + 7^\circ = 67^\circ</math>. Also, <math>\angle{EMB} + \angle {CMB} = \angle{CME} = 150^\circ</math>, so <math>\angle{CME} = 150^\circ - 67^\circ  = \boxed{83^\circ}</math>.
 +
 +
=== Solution 5 (Ceva) ===
 +
 +
Noticing that we have three concurrent cevians, we apply Ceva's theorem:
 +
 +
<cmath>(\sin \angle ACM)(\sin \angle BAM)(\sin \angle CBM) = (\sin \angle CAM)(\sin \angle ABM)(\sin \angle BCM) </cmath>
 +
<cmath>(\sin 23)(\sin 30)(\sin x) = (\sin 7)(\sin 37-x)(\sin 83)</cmath>
 +
 +
using the fact that <math>\sin 83 = \cos 7</math> and <math>(\sin 7)(\cos 7) = 1/2 (\sin 14)</math> we have:
 +
 +
<cmath> (\sin 23)(\sin x) = (\sin 14)(\sin 37-x)</cmath>
 +
 +
By inspection, <math>x=14^\circ</math> works, so the answer is <math>180-83-14= \boxed{083}</math>
 +
=== Solution 6 ===
 +
 +
Let <math>\angle{APC} = \theta^{\circ}</math>
 +
Using sine rule on <math>\triangle{APB}, \triangle{APC}</math>, letting <math>AP=d</math> we get :
 +
<math>\frac{d}{1} = \frac{\sin{7^{\circ}}}{\sin{150^{\circ}}} = 2\sin{7^{\circ}}= \frac{\sin{14^{\circ}}}{\cos{7^{\circ}}}= \frac{\sin{14^{\circ}}}{\sin{83^{\circ}}}= \frac{\sin{(97-\theta)^{\circ}}}{\sin{\theta^{\circ}}}</math>
 +
Simplifying, we get that
 +
<math>\cos{(14-\theta)^{\circ}}-\cos{(14+\theta)^{\circ}}=\cos{(14-\theta)^{\circ}}-\cos{(180-\theta)^{\circ}},</math> from where <math>\cos{(14-\theta)^{\circ}}=\cos{(180-\theta)^{\circ}}</math>
 +
Simplifying more, we get that <math>\sin{97^{\circ}} \cdot \sin{(\theta-83)^{\circ}} = 0</math>, so <math>\theta = 83^{\circ}</math>
 +
NOTE: The simplifications were carried out by the product-to-sum and sum-to-product identities
 +
~Prabh1512
 +
 +
=== Solution 7 ===
 +
 +
Because protractors are allowed on the AIME, it is practical to solve this problem by carefully drawing the picture and measuring the angle.
  
 
== See also ==
 
== See also ==

Latest revision as of 02:08, 30 September 2024

Problem

Triangle $ABC$ is isosceles with $AC = BC$ and $\angle ACB = 106^\circ.$ Point $M$ is in the interior of the triangle so that $\angle MAC = 7^\circ$ and $\angle MCA = 23^\circ.$ Find the number of degrees in $\angle CMB.$

[asy] pointpen = black; pathpen = black+linewidth(0.7); size(220);  /* We will WLOG AB = 2 to draw following */  pair A=(0,0), B=(2,0), C=(1,Tan(37)), M=IP(A--(2Cos(30),2Sin(30)),B--B+(-2,2Tan(23)));  D(MP("A",A)--MP("B",B)--MP("C",C,N)--cycle); D(A--D(MP("M",M))--B); D(C--M); [/asy]


Solutions

[asy] pointpen = black; pathpen = black+linewidth(0.7); size(220);  /* We will WLOG AB = 2 to draw following */  pair A=(0,0), B=(2,0), C=(1,Tan(37)), M=IP(A--(2Cos(30),2Sin(30)),B--B+(-2,2Tan(23)));  D(MP("A",A)--MP("B",B)--MP("C",C,N)--cycle); D(A--D(MP("M",M))--B); D(C--M); [/asy]

Solution 1

[asy] pointpen = black; pathpen = black+linewidth(0.7); size(220);  /* We will WLOG AB = 2 to draw following */  pair A=(0,0), B=(2,0), C=(1,Tan(37)), M=IP(A--(2Cos(30),2Sin(30)),B--B+(-2,2Tan(23))), N=(2-M.x,M.y);  D(MP("A",A)--MP("B",B)--MP("C",C,N)--cycle); D(A--D(MP("M",M))--B); D(C--M); D(C--D(MP("N",N))--B--N--M,linetype("6 6")+linewidth(0.7));  [/asy]

Take point $N$ inside $\triangle ABC$ such that $\angle CBN = 7^\circ$ and $\angle BCN = 23^\circ$.

$\angle MCN = 106^\circ - 2\cdot 23^\circ = 60^\circ$. Also, since $\triangle AMC$ and $\triangle BNC$ are congruent (by ASA), $CM = CN$. Hence $\triangle CMN$ is an equilateral triangle, so $\angle CNM = 60^\circ$.

Then $\angle MNB = 360^\circ - \angle CNM - \angle CNB = 360^\circ - 60^\circ - 150^\circ = 150^\circ$. We now see that $\triangle MNB$ and $\triangle CNB$ are congruent. Therefore, $CB = MB$, so $\angle CMB = \angle MCB = \boxed{83^\circ}$.

Solution 2

From the givens, we have the following angle measures: $m\angle AMC = 150^\circ$, $m\angle MCB = 83^\circ$. If we define $m\angle CMB = \theta$ then we also have $m\angle CBM = 97^\circ - \theta$. Then apply the Law of Sines to triangles $\triangle AMC$ and $\triangle BMC$ to get

\[\frac{\sin 150^\circ}{\sin 7^\circ} = \frac{AC}{CM} = \frac{BC}{CM} = \frac{\sin \theta}{\sin (97^\circ - \theta)}\]

Clearing denominators, evaluating $\sin 150^\circ = \frac 12$ and applying one of our trigonometric identities to the result gives

\[\frac{1}{2} \cos (7^\circ - \theta )= \sin 7^\circ \sin \theta\]

and multiplying through by 2 and applying the double angle formulas gives

\[\cos 7^\circ\cos\theta + \sin7^\circ\sin\theta = 2 \sin7^\circ \sin\theta\]

and so $\cos 7^\circ \cos \theta = \sin 7^\circ \sin\theta \Longleftrightarrow \tan 7^{\circ} = \cot \theta$; since $0^\circ < \theta < 180^\circ$, we must have $\theta = 83^\circ$, so the answer is $\boxed{83}$.

Solution 3

Without loss of generality, let $AC = BC = 1$. Then, using the Law of Sines in triangle $AMC$, we get $\frac {1}{\sin 150} = \frac {MC}{\sin 7}$, and using the sine addition formula to evaluate $\sin 150 = \sin (90 + 60)$, we get $MC = 2 \sin 7$.

Then, using the Law of Cosines in triangle $MCB$, we get $MB^2 = 4\sin^2 7 + 1 - 4\sin 7(\cos 83) = 1$, since $\cos 83 = \sin 7$. So triangle $MCB$ is isosceles, and $\angle CMB = \boxed{83}$.

Solution 4

Note: A diagram would be much appreciated; I cannot make one since I'm bad at asymptote. Also, please make this less cluttered :) ~tauros

First, take point $E$ outside of $\triangle{ABC}$ so that $\triangle{CEB}$ is equilateral. Then, connect $A$, $C$, and $M$ to $E$. Also, let $ME$ intersect $AB$ at $F$. $\angle{MCE} = 83^\circ - 60^\circ = 23^\circ$, $CE = AB$, and (trivially) $CM = CM$, so $\triangle{MCE} \cong  \triangle{MCA}$ by SAS congruence. Also, $\angle{CMA} = \angle{CME} = 150^\circ$, so $\angle{AME} = 60^\circ$, and $AM = ME$, making $\triangle{AME}$ also equilateral. (it is isosceles with a $60^\circ$ angle) $\triangle{MAF} \cong \triangle{EAF}$ by SAS ($MA = AE$, $AF = AF$, and $m\angle{MAF} = m\angle{EAF} = 30^\circ$), and $\triangle{MAB} \cong \triangle{EAB}$ by SAS ($MA = AE$, $AB = AB$, and $m\angle{MAB} = m\angle{EAB} = 30^\circ$). Thus, $\triangle{BME}$ is isosceles, with $m\angle{BME} = m\angle{BEM} = 60^\circ + 7^\circ = 67^\circ$. Also, $\angle{EMB} + \angle {CMB} = \angle{CME} = 150^\circ$, so $\angle{CME} = 150^\circ - 67^\circ  = \boxed{83^\circ}$.

Solution 5 (Ceva)

Noticing that we have three concurrent cevians, we apply Ceva's theorem:

\[(\sin \angle ACM)(\sin \angle BAM)(\sin \angle CBM) = (\sin \angle CAM)(\sin \angle ABM)(\sin \angle BCM)\] \[(\sin 23)(\sin 30)(\sin x) = (\sin 7)(\sin 37-x)(\sin 83)\]

using the fact that $\sin 83 = \cos 7$ and $(\sin 7)(\cos 7) = 1/2 (\sin 14)$ we have:

\[(\sin 23)(\sin x) = (\sin 14)(\sin 37-x)\]

By inspection, $x=14^\circ$ works, so the answer is $180-83-14= \boxed{083}$

Solution 6

Let $\angle{APC} = \theta^{\circ}$ Using sine rule on $\triangle{APB}, \triangle{APC}$, letting $AP=d$ we get : $\frac{d}{1} = \frac{\sin{7^{\circ}}}{\sin{150^{\circ}}} = 2\sin{7^{\circ}}= \frac{\sin{14^{\circ}}}{\cos{7^{\circ}}}= \frac{\sin{14^{\circ}}}{\sin{83^{\circ}}}= \frac{\sin{(97-\theta)^{\circ}}}{\sin{\theta^{\circ}}}$ Simplifying, we get that $\cos{(14-\theta)^{\circ}}-\cos{(14+\theta)^{\circ}}=\cos{(14-\theta)^{\circ}}-\cos{(180-\theta)^{\circ}},$ from where $\cos{(14-\theta)^{\circ}}=\cos{(180-\theta)^{\circ}}$ Simplifying more, we get that $\sin{97^{\circ}} \cdot \sin{(\theta-83)^{\circ}} = 0$, so $\theta = 83^{\circ}$ NOTE: The simplifications were carried out by the product-to-sum and sum-to-product identities ~Prabh1512

Solution 7

Because protractors are allowed on the AIME, it is practical to solve this problem by carefully drawing the picture and measuring the angle.

See also

2003 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png