Difference between revisions of "2021 AMC 10B Problems/Problem 2"

(Created page with "This article was made early. Please ignore it until 2021 AMC 10A Problems are released.")
 
(Solution 1)
 
(44 intermediate revisions by 23 users not shown)
Line 1: Line 1:
This article was made early. Please ignore it until 2021 AMC 10A Problems are released.
+
==Problem==
 +
What is the value of <math>\sqrt{\left(3-2\sqrt{3}\right)^2}+\sqrt{\left(3+2\sqrt{3}\right)^2}</math>?
 +
 
 +
<math>\textbf{(A)} ~0 \qquad\textbf{(B)} ~4\sqrt{3}-6 \qquad\textbf{(C)} ~6 \qquad\textbf{(D)} ~4\sqrt{3} \qquad\textbf{(E)} ~4\sqrt{3}+6</math>
 +
 
 +
==Solution 1==
 +
Note that the square root of any number squared is always the absolute value of the squared number because the square root function will only return a nonnegative number. By squaring both <math>3</math> and <math>2\sqrt{3}</math>, we see that <math>2\sqrt{3}>3</math>, thus <math>3-2\sqrt{3}</math> is negative, so we must take the absolute value of <math>3-2\sqrt{3}</math>, which is just <math>2\sqrt{3}-3</math>. Knowing this, the first term in the expression equals <math>2\sqrt{3}-3</math> and the second term is <math>3+2\sqrt3</math>, and summing the two gives <math>\boxed{\textbf{(D)} ~4\sqrt{3}}</math>.
 +
 
 +
~bjc, abhinavg0627 and JackBocresion
 +
 
 +
==Solution 2==
 +
Let <math>x = \sqrt{(3-2\sqrt{3})^2}+\sqrt{(3+2\sqrt{3})^2}</math>, then <math>x^2 = (3-2\sqrt{3})^2+2\sqrt{(-3)^2}+(3+2\sqrt3)^2</math>. The <math>2\sqrt{(-3)^2}</math> term is there due to difference of squares when you simplify <math>2ab</math> from <math>(a + b)^2</math>. Simplifying the expression gives us <math>x^2 = 48</math>, so <math>x=\boxed{\textbf{(D)} ~4\sqrt{3}}</math> ~ shrungpatel
 +
 
 +
==Video Solution==
 +
https://youtu.be/HHVdPTLQsLc
 +
~Math Python
 +
 
 +
== Video Solution by OmegaLearn ==
 +
https://youtu.be/Df3AIGD78xM
 +
 
 +
~pi_is_3.14
 +
 
 +
==Video Solution==
 +
https://youtu.be/v71C6cFbErQ
 +
 
 +
~savannahsolver
 +
 
 +
==Video Solution by TheBeautyofMath==
 +
https://youtu.be/gLahuINjRzU?t=154
 +
 
 +
~IceMatrix
 +
 
 +
==Video Solution by Interstigation==
 +
https://youtu.be/DvpN56Ob6Zw?t=1
 +
 
 +
~Interstigation
 +
 
 +
==Video Solution by Mathematical Dexterity (50 Seconds)==
 +
https://www.youtube.com/watch?v=ScZ5VK7QTpY
 +
 
 +
==Video Solution==
 +
https://youtu.be/3GHD62FK0xY
 +
 
 +
~Education, the Study of Everything
 +
 
 +
==See Also==
 +
{{AMC10 box|year=2021|ab=B|num-b=1|num-a=3}}
 +
{{MAA Notice}}

Latest revision as of 09:09, 2 October 2024

Problem

What is the value of $\sqrt{\left(3-2\sqrt{3}\right)^2}+\sqrt{\left(3+2\sqrt{3}\right)^2}$?

$\textbf{(A)} ~0 \qquad\textbf{(B)} ~4\sqrt{3}-6 \qquad\textbf{(C)} ~6 \qquad\textbf{(D)} ~4\sqrt{3} \qquad\textbf{(E)} ~4\sqrt{3}+6$

Solution 1

Note that the square root of any number squared is always the absolute value of the squared number because the square root function will only return a nonnegative number. By squaring both $3$ and $2\sqrt{3}$, we see that $2\sqrt{3}>3$, thus $3-2\sqrt{3}$ is negative, so we must take the absolute value of $3-2\sqrt{3}$, which is just $2\sqrt{3}-3$. Knowing this, the first term in the expression equals $2\sqrt{3}-3$ and the second term is $3+2\sqrt3$, and summing the two gives $\boxed{\textbf{(D)} ~4\sqrt{3}}$.

~bjc, abhinavg0627 and JackBocresion

Solution 2

Let $x = \sqrt{(3-2\sqrt{3})^2}+\sqrt{(3+2\sqrt{3})^2}$, then $x^2 = (3-2\sqrt{3})^2+2\sqrt{(-3)^2}+(3+2\sqrt3)^2$. The $2\sqrt{(-3)^2}$ term is there due to difference of squares when you simplify $2ab$ from $(a + b)^2$. Simplifying the expression gives us $x^2 = 48$, so $x=\boxed{\textbf{(D)} ~4\sqrt{3}}$ ~ shrungpatel

Video Solution

https://youtu.be/HHVdPTLQsLc ~Math Python

Video Solution by OmegaLearn

https://youtu.be/Df3AIGD78xM

~pi_is_3.14

Video Solution

https://youtu.be/v71C6cFbErQ

~savannahsolver

Video Solution by TheBeautyofMath

https://youtu.be/gLahuINjRzU?t=154

~IceMatrix

Video Solution by Interstigation

https://youtu.be/DvpN56Ob6Zw?t=1

~Interstigation

Video Solution by Mathematical Dexterity (50 Seconds)

https://www.youtube.com/watch?v=ScZ5VK7QTpY

Video Solution

https://youtu.be/3GHD62FK0xY

~Education, the Study of Everything

See Also

2021 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png