Difference between revisions of "2023 AMC 10A Problems/Problem 13"
m (→Video Solution by Power Solve (easy to digest!)) |
m (→Solution 6 (Logic)) |
||
(9 intermediate revisions by 5 users not shown) | |||
Line 3: | Line 3: | ||
<math>\textbf{(A) } 1728 \qquad \textbf{(B) } 2601 \qquad \textbf{(C) } 3072 \qquad \textbf{(D) } 4608 \qquad \textbf{(E) } 6912</math> | <math>\textbf{(A) } 1728 \qquad \textbf{(B) } 2601 \qquad \textbf{(C) } 3072 \qquad \textbf{(D) } 4608 \qquad \textbf{(E) } 6912</math> | ||
− | |||
− | |||
− | |||
==Solution 1== | ==Solution 1== | ||
Line 21: | Line 18: | ||
~Technodoggo | ~Technodoggo | ||
~(minor grammar edits by vadava_lx) | ~(minor grammar edits by vadava_lx) | ||
− | |||
− | |||
− | |||
==Solution 3 (Guessing)== | ==Solution 3 (Guessing)== | ||
Line 75: | Line 69: | ||
<cmath>\implies BC = \frac {AB}{2} \implies AB^2 = BC^2+ AC^2 \implies</cmath> | <cmath>\implies BC = \frac {AB}{2} \implies AB^2 = BC^2+ AC^2 \implies</cmath> | ||
+ | |||
<cmath>AB^2 = \frac {4}{3} \cdot 48^2 = 4 \cdot 48 \cdot 16 \approx 200 \cdot 16 = 3200.</cmath> | <cmath>AB^2 = \frac {4}{3} \cdot 48^2 = 4 \cdot 48 \cdot 16 \approx 200 \cdot 16 = 3200.</cmath> | ||
We look at the answers and decide: the square of <math>AB</math> is <math>\boxed{\textbf{(C) 3072}}</math>. | We look at the answers and decide: the square of <math>AB</math> is <math>\boxed{\textbf{(C) 3072}}</math>. | ||
-vvsss | -vvsss | ||
+ | |||
+ | ==Video Solution by Math-X == | ||
+ | https://youtu.be/GP-DYudh5qU?si=unB-KAz2AXgMuLSS&t=3337 | ||
+ | |||
+ | ~Math-X | ||
+ | ==Video Solution 🚀 Under 2 min 🚀== | ||
+ | |||
+ | https://youtu.be/d5XeBKZvTGQ | ||
+ | |||
+ | <i>~Education, the Study of Everything </i> | ||
==Video Solution by Power Solve == | ==Video Solution by Power Solve == | ||
Line 89: | Line 94: | ||
https://youtu.be/mx2iDUeftJM | https://youtu.be/mx2iDUeftJM | ||
− | == Video Solution by CosineMethod | + | == Video Solution by CosineMethod== |
https://www.youtube.com/watch?v=BJKHsHQyoTg | https://www.youtube.com/watch?v=BJKHsHQyoTg | ||
Line 99: | Line 104: | ||
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | ~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | ||
+ | ==Video Solution by MegaMath== | ||
− | + | https://www.youtube.com/watch?v=ZsiqPRWCEkQ&t=3s | |
− | https:// | ||
− | |||
− | |||
− | |||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2023|ab=A|num-b=12|num-a=14}} | {{AMC10 box|year=2023|ab=A|num-b=12|num-a=14}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 14:51, 13 October 2024
Contents
- 1 Problem
- 2 Solution 1
- 3 Solution 3 (Guessing)
- 4 Solution 4
- 5 Solution 5
- 6 Solution 6 (Logic)
- 7 Solution 7
- 8 Video Solution by Math-X
- 9 Video Solution 🚀 Under 2 min 🚀
- 10 Video Solution by Power Solve
- 11 Video Solution by SpreadTheMathLove
- 12 Video Solution 1 by OmegaLearn
- 13 Video Solution by CosineMethod
- 14 Video Solution
- 15 Video Solution by MegaMath
- 16 See Also
Problem
Abdul and Chiang are standing feet apart in a field. Bharat is standing in the same field as far from Abdul as possible so that the angle formed by his lines of sight to Abdul and Chiang measures . What is the square of the distance (in feet) between Abdul and Bharat?
Solution 1
Let and .
By the Law of Sines, we know that . Rearranging, we get that where is a function of . We want to maximize .
We know that the maximum value of , so this yields
A quick check verifies that indeed works.
~Technodoggo ~(minor grammar edits by vadava_lx)
Solution 3 (Guessing)
Guess that the optimal configuration is a 30-60-90 triangle, as an equilateral triangle gives an answer of , which is not on the answer choices. Its ratio is , so .
Its square is then
~not_slay
~wangzrpi
Solution 4
We use , , to refer to Abdul, Bharat and Chiang, respectively. We draw a circle that passes through and and has the central angle . Thus, is on this circle. Thus, the longest distance between and is the diameter of this circle. Following from the law of sines, the square of this diameter is
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Solution 5
We can represent Abdul, Bharat and Chiang as , , and , respectively. Since we have and (from other solutions) , this is a triangle. By the side ratios of a triangle, we can infer that . Squaring AB we get .
~ESAOPS
Solution 6 (Logic)
As in the previous solution, refer to Abdul, Bharat and Chiang as , , and , respectively- we also have . Note that we actually can't change the lengths, and thus the positions, of and , because that would change the value of (if we extended either of these lengths, then we could simply draw such that is perpendicular to , so is unchanged). We can change the position of to alter the values of and , but throughout all of these changes, remains unvaried. Therefore, we can let .
(What is the justification for all of these assumptions??)
It follows that is --, and . is then and the square of is .
-Benedict T (countmath1)
Solution 7
(why?)
We look at the answers and decide: the square of is .
-vvsss
Video Solution by Math-X
https://youtu.be/GP-DYudh5qU?si=unB-KAz2AXgMuLSS&t=3337
~Math-X
Video Solution 🚀 Under 2 min 🚀
~Education, the Study of Everything
Video Solution by Power Solve
https://www.youtube.com/watch?v=jkfsBYzBJbQ
Video Solution by SpreadTheMathLove
https://www.youtube.com/watch?v=nmVZxartc-o
Video Solution 1 by OmegaLearn
Video Solution by CosineMethod
https://www.youtube.com/watch?v=BJKHsHQyoTg
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution by MegaMath
https://www.youtube.com/watch?v=ZsiqPRWCEkQ&t=3s
See Also
2023 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.