Difference between revisions of "2000 AMC 12 Problems/Problem 1"
m (2000 AMC 12/Problem 1 moved to 2000 AMC 12 Problems/Problem 1) |
m (→Solution 1 (Verifying the Statement)) |
||
(24 intermediate revisions by 15 users not shown) | |||
Line 1: | Line 1: | ||
− | + | {{duplicate|[[2000 AMC 12 Problems|2000 AMC 12 #1]] and [[2000 AMC 10 Problems|2000 AMC 10 #1]]}} | |
− | + | ==Problem== | |
+ | In the year <math>2001</math>, the United States will host the [[International Mathematical Olympiad]]. Let <math>I,M,</math> and <math>O</math> be distinct [[positive integer]]s such that the product <math>I \cdot M \cdot O = 2001 </math>. What is the largest possible value of the sum <math>I + M + O</math>? | ||
− | == Solution == | + | <math>\textbf{(A)}\ 23 \qquad \textbf{(B)}\ 55 \qquad \textbf{(C)}\ 99 \qquad \textbf{(D)}\ 111 \qquad \textbf{(E)}\ 671</math> |
− | The sum is the highest if two [[factor]]s are the lowest | + | |
− | So, <math>1 \cdot 3 \cdot 667 = 2001</math> and <math>1+3+667=671 \Longrightarrow \ | + | == Solution 1 (Verifying the Statement)== |
+ | First, we need to recognize that a number is going to be largest only if, of the <math>3</math> [[factor]]s, two of them are small. If we want to make sure that this is correct, we could test with a smaller number, like <math>30</math>. It becomes much more clear that this is true, and in this situation, the value of <math>I + M + O</math> would be <math>18</math>. Now, we use this process on <math>2001</math> to get <math>667 * 3 * 1</math> as our <math>3</math> factors. | ||
+ | Hence, we have <math>667 + 3 + 1 = \boxed{\text{(E) 671.}}</math> | ||
+ | |||
+ | ~armang32324 | ||
+ | |||
+ | == Solution 2== | ||
+ | |||
+ | The sum is the highest if two [[factor]]s are the lowest. | ||
+ | |||
+ | So, <math>1 \cdot 3 \cdot 667 = 2001</math> and <math>1+3+667=671 \Longrightarrow \boxed{\text{(E) 671}}</math>. | ||
+ | |||
+ | == Solution 3 (Answer Choices) == | ||
+ | |||
+ | We see since <math>2 + 0 + 0 + 1</math> is divisible by <math>3</math>, we can eliminate all of the first <math>4</math> answer choices because they are way too small and get <math>\boxed{\text{(E) 671}}</math> as our final answer. | ||
+ | |||
+ | == Solution 4 (Faster Way) == | ||
+ | |||
+ | Notice <math>2001 = 3 * 29 * 23</math>, so we can just maximize this with <math>667 * 3 * 1</math>, which has a sum of <math>671</math>. Our answer is <math>\boxed{\text{(E) 671}}</math>. | ||
+ | |||
+ | -itsj | ||
+ | |||
+ | ==Video Solution by Daily Dose of Math== | ||
+ | |||
+ | https://www.youtube.com/watch?v=aSzsStkkYeA | ||
+ | |||
+ | ~Thesmartgreekmathdude | ||
==See Also== | ==See Also== | ||
− | |||
− | |||
+ | {{AMC12 box|year=2000|before=First<br />Question|num-a=2}} | ||
+ | {{AMC10 box|year=2000|before=First<br />Question|num-a=2}} | ||
[[Category:Introductory Algebra Problems]] | [[Category:Introductory Algebra Problems]] | ||
+ | [[Category:Introductory Number Theory Problems]] | ||
+ | {{MAA Notice}} |
Latest revision as of 18:37, 30 November 2024
- The following problem is from both the 2000 AMC 12 #1 and 2000 AMC 10 #1, so both problems redirect to this page.
Contents
Problem
In the year , the United States will host the International Mathematical Olympiad. Let and be distinct positive integers such that the product . What is the largest possible value of the sum ?
Solution 1 (Verifying the Statement)
First, we need to recognize that a number is going to be largest only if, of the factors, two of them are small. If we want to make sure that this is correct, we could test with a smaller number, like . It becomes much more clear that this is true, and in this situation, the value of would be . Now, we use this process on to get as our factors. Hence, we have
~armang32324
Solution 2
The sum is the highest if two factors are the lowest.
So, and .
Solution 3 (Answer Choices)
We see since is divisible by , we can eliminate all of the first answer choices because they are way too small and get as our final answer.
Solution 4 (Faster Way)
Notice , so we can just maximize this with , which has a sum of . Our answer is .
-itsj
Video Solution by Daily Dose of Math
https://www.youtube.com/watch?v=aSzsStkkYeA
~Thesmartgreekmathdude
See Also
2000 AMC 12 (Problems • Answer Key • Resources) | |
Preceded by First Question |
Followed by Problem 2 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2000 AMC 10 (Problems • Answer Key • Resources) | ||
Preceded by First Question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.