Difference between revisions of "2023 AMC 10B Problems/Problem 5"
Shalomkeshet (talk | contribs) (Solution 3) |
Shalomkeshet (talk | contribs) (→Solution 3) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 47: | Line 47: | ||
<cmath>\Rightarrow n =\boxed{\textbf{(A) }10}</cmath> | <cmath>\Rightarrow n =\boxed{\textbf{(A) }10}</cmath> | ||
+ | |||
+ | ~ <math>Shalomkeshet</math> | ||
==Video Solution 1 by SpreadTheMathLove== | ==Video Solution 1 by SpreadTheMathLove== |
Latest revision as of 06:21, 12 December 2024
Contents
Problem
Maddy and Lara see a list of numbers written on a blackboard. Maddy adds to each number in the list and finds that the sum of her new numbers is . Lara multiplies each number in the list by and finds that the sum of her new numbers is also . How many numbers are written on the blackboard?
Solution
Let there be numbers in the list of numbers, and let their sum be . Then we have the following
From the second equation, . So,
~Mintylemon66 (formatted atictacksh)
Solution 2
Let where represents the th number written on the board. Lara's multiplied each number by , so her sum will be . This is the same as . We are given this quantity is equal to , so the original numbers add to . Maddy adds to each of the terms which yields, . This is the same as the sum of the original series plus . Setting this equal to ,
~vsinghminhas
Solution 3
If the list of numbers written on the board is , then we can formulate two equations:
We can rewrite the first equation by multiplying both sides by :
Now, subtract the second equation from the first:
~
Video Solution 1 by SpreadTheMathLove
https://www.youtube.com/watch?v=SUnhwbA5_So
Video Solution by Math-X (First understand the problem!!!)
https://youtu.be/EuLkw8HFdk4?si=6dyj2QxkbBuNk6j7&t=951
~Math-X
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution by Interstigation
https://youtu.be/gDnmvcOzxjg?si=cYB6uChy7Ue0UT4L
See also
2023 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.