Difference between revisions of "2023 AIME I Problems/Problem 12"
(→Solution 3 (LOC)) |
MRENTHUSIASM (talk | contribs) (→Solution 7) |
||
(46 intermediate revisions by 16 users not shown) | |||
Line 2: | Line 2: | ||
Let <math>\triangle ABC</math> be an equilateral triangle with side length <math>55.</math> Points <math>D,</math> <math>E,</math> and <math>F</math> lie on <math>\overline{BC},</math> <math>\overline{CA},</math> and <math>\overline{AB},</math> respectively, with <math>BD = 7,</math> <math>CE=30,</math> and <math>AF=40.</math> Point <math>P</math> inside <math>\triangle ABC</math> has the property that <cmath>\angle AEP = \angle BFP = \angle CDP.</cmath> Find <math>\tan^2(\angle AEP).</math> | Let <math>\triangle ABC</math> be an equilateral triangle with side length <math>55.</math> Points <math>D,</math> <math>E,</math> and <math>F</math> lie on <math>\overline{BC},</math> <math>\overline{CA},</math> and <math>\overline{AB},</math> respectively, with <math>BD = 7,</math> <math>CE=30,</math> and <math>AF=40.</math> Point <math>P</math> inside <math>\triangle ABC</math> has the property that <cmath>\angle AEP = \angle BFP = \angle CDP.</cmath> Find <math>\tan^2(\angle AEP).</math> | ||
− | ==Solution== | + | ==Diagram== |
+ | <asy> | ||
+ | /* Made by MRENTHUSIASM */ | ||
+ | |||
+ | size(300); | ||
+ | |||
+ | pair A, B, C, D, E, F, P; | ||
+ | A = 55*sqrt(3)/3 * dir(90); | ||
+ | B = 55*sqrt(3)/3 * dir(210); | ||
+ | C = 55*sqrt(3)/3 * dir(330); | ||
+ | D = B + 7*dir(0); | ||
+ | E = A + 25*dir(C-A); | ||
+ | F = A + 40*dir(B-A); | ||
+ | P = intersectionpoints(Circle(D,54*sqrt(19)/19),Circle(F,5*sqrt(19)/19))[0]; | ||
+ | |||
+ | draw(anglemark(A,E,P,20),red); | ||
+ | draw(anglemark(B,F,P,20),red); | ||
+ | draw(anglemark(C,D,P,20),red); | ||
+ | add(pathticks(anglemark(A,E,P,20), n = 1, r = 0.2, s = 12, red)); | ||
+ | add(pathticks(anglemark(B,F,P,20), n = 1, r = 0.2, s = 12, red)); | ||
+ | add(pathticks(anglemark(C,D,P,20), n = 1, r = 0.2, s = 12, red)); | ||
+ | draw(A--B--C--cycle^^P--E^^P--F^^P--D); | ||
+ | |||
+ | dot("$A$",A,1.5*dir(A),linewidth(4)); | ||
+ | dot("$B$",B,1.5*dir(B),linewidth(4)); | ||
+ | dot("$C$",C,1.5*dir(C),linewidth(4)); | ||
+ | dot("$D$",D,1.5*S,linewidth(4)); | ||
+ | dot("$E$",E,1.5*dir(30),linewidth(4)); | ||
+ | dot("$F$",F,1.5*dir(150),linewidth(4)); | ||
+ | dot("$P$",P,1.5*dir(-30),linewidth(4)); | ||
+ | |||
+ | label("$7$",midpoint(B--D),1.5*S,red); | ||
+ | label("$30$",midpoint(C--E),1.5*dir(30),red); | ||
+ | label("$40$",midpoint(A--F),1.5*dir(150),red); | ||
+ | </asy> | ||
+ | ~MRENTHUSIASM | ||
+ | |||
+ | ==Solution 1 (Coordinates Bash)== | ||
+ | By Miquel's theorem, <math>P=(AEF)\cap(BFD)\cap(CDE)</math> (intersection of circles)<math>\text{*}</math>. The law of cosines can be used to compute <math>DE=42</math>, <math>EF=35</math>, and <math>FD=13</math>. Toss the points on the coordinate plane; let <math>B=(-7, 0)</math>, <math>D=(0, 0)</math>, and <math>C=(48, 0)</math>, where we will find <math>\tan^{2}\left(\measuredangle CDP\right)</math> with <math>P=(BFD)\cap(CDE)</math>. | ||
+ | |||
+ | By the extended law of sines, the radius of circle <math>(BFD)</math> is <math>\frac{13}{2\sin 60^{\circ}}=\frac{13}{3}\sqrt{3}</math>. Its center lies on the line <math>x=-\frac{7}{2}</math>, and the origin is a point on it, so <math>y=\frac{23}{6}\sqrt{3}</math>. | ||
+ | |||
+ | The radius of circle <math>(CDE)</math> is <math>\frac{42}{2\sin 60^{\circ}}=14\sqrt{3}</math>. The origin is also a point on it, and its center is on the line <math>x=24</math>, so <math>y=2\sqrt{3}</math>. | ||
+ | |||
+ | The equations of the two circles are <cmath>\begin{align*}(BFD)&:\left(x+\tfrac{7}{2}\right)^{2}+\left(y-\tfrac{23}{6}\sqrt{3}\right)^{2}=\tfrac{169}{3} \\ (CDE)&:\left(x-24\right)^{2}+\left(y-2\sqrt{3}\right)^{2}=588\end{align*}</cmath> These equations simplify to <cmath>\begin{align*}(BFD)&:x^{2}+7x+y^{2}-\tfrac{23}{3}\sqrt{3}y=0 \\ (CDE)&: x^{2}-48x+y^{2}-4\sqrt{3}y=0\end{align*}</cmath> Subtracting these two equations gives that both their points of intersection, <math>D</math> and <math>P</math>, lie on the line <math>55x-\tfrac{11}{3}\sqrt{3}y=0</math>. Hence, <math>\tan^{2}\left(\measuredangle AEP\right)=\tan^{2}\left(\measuredangle CDP\right)=\left(\frac{55}{\tfrac{11}{3}\sqrt{3}}\right)^{2}=3\left(\tfrac{55}{11}\right)^{2}=\boxed{075}</math>. To scale, the configuration looks like the figure below: | ||
+ | <asy> | ||
+ | /* Made by MRENTHUSIASM */ | ||
+ | |||
+ | size(400); | ||
+ | |||
+ | pair A, B, C, D, E, F, P; | ||
+ | A = 55*sqrt(3)/3 * dir(90); | ||
+ | B = 55*sqrt(3)/3 * dir(210); | ||
+ | C = 55*sqrt(3)/3 * dir(330); | ||
+ | D = B + 7*dir(0); | ||
+ | E = A + 25*dir(C-A); | ||
+ | F = A + 40*dir(B-A); | ||
+ | P = intersectionpoints(Circle(D,54*sqrt(19)/19),Circle(F,5*sqrt(19)/19))[0]; | ||
+ | |||
+ | filldraw(D--E--F--cycle,yellow); | ||
+ | draw(A--B--C--cycle); | ||
+ | draw(circumcircle(A,E,F)^^circumcircle(B,D,F)^^circumcircle(C,D,E),blue); | ||
+ | |||
+ | dot("$A$",A,1.5*dir(A),linewidth(4)); | ||
+ | dot("$B$",B,1.5*dir(B),linewidth(4)); | ||
+ | dot("$C$",C,1.5*dir(C),linewidth(4)); | ||
+ | dot("$D$",D,1.5*S,linewidth(4)); | ||
+ | dot("$E$",E,1.5*dir(30),linewidth(4)); | ||
+ | dot("$F$",F,1.5*dir(150),linewidth(4)); | ||
+ | dot("$P$",P,1.5*dir(-30),linewidth(4)); | ||
+ | |||
+ | label("$7$",midpoint(B--D),1.5*S,red); | ||
+ | label("$30$",midpoint(C--E),1.5*dir(30),red); | ||
+ | label("$40$",midpoint(A--F),1.5*dir(150),red); | ||
+ | </asy> | ||
+ | |||
+ | <math>\text{*}</math> | ||
+ | Basic angle chasing gives <math>\angle BDP=180-\angle CDP.</math> Because <math>\angle BFP+\angle BDP=180+\angle BFP-\angle CDP=180,</math> which means that <math>BFPD</math> is cyclic, and that <math>P</math> passes through the circumcircle of triangle <math>BFD.</math> Similar reasoning leads us to the fact that <math>P</math> also passes through the circumcircles of triangles <math>AEF</math> and <math>CDE,</math> which means that <math>P=(AEF)\cap(BFD)\cap(CDE).</math> Continue as above. | ||
+ | |||
+ | ==Solution 2 (Vectors/Complex)== | ||
Denote <math>\theta = \angle AEP</math>. | Denote <math>\theta = \angle AEP</math>. | ||
Line 64: | Line 143: | ||
</cmath> | </cmath> | ||
− | Therefore, <math>\tan^2 \theta = \boxed{ | + | Therefore, <math>\tan^2 \theta = \boxed{075}</math>. |
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | ~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | ||
− | ==Solution | + | ==Solution 3 (Synthetic)== |
Drop the perpendiculars from <math>P</math> to <math>\overline{AB}</math>, <math>\overline{AC}</math>, <math>\overline{BC}</math>, and call them <math>Q,R,</math> and <math>S</math> respectively. This gives us three similar right triangles <math>FQP</math>, <math>ERP</math>, and <math>DSP.</math> | Drop the perpendiculars from <math>P</math> to <math>\overline{AB}</math>, <math>\overline{AC}</math>, <math>\overline{BC}</math>, and call them <math>Q,R,</math> and <math>S</math> respectively. This gives us three similar right triangles <math>FQP</math>, <math>ERP</math>, and <math>DSP.</math> | ||
Line 77: | Line 156: | ||
Finally, <math>\tan AEP = \dfrac{PQ}{FQ} = \dfrac{PR}{ER} = \dfrac{PS}{DS} = \dfrac{PQ+PR+PS}{FQ+ER+DS} = 5 \sqrt{3}.</math> | Finally, <math>\tan AEP = \dfrac{PQ}{FQ} = \dfrac{PR}{ER} = \dfrac{PS}{DS} = \dfrac{PQ+PR+PS}{FQ+ER+DS} = 5 \sqrt{3}.</math> | ||
− | Thus, <math>\tan^2 AEP = \boxed{075. | + | Thus, <math>\tan^2 AEP = \boxed{075}.</math> |
~anon | ~anon | ||
− | ==Solution | + | <i><b>Claim</b></i> |
− | This solution is | + | [[File:Carnot theorem new.png|400px|right]] |
+ | a) Carnot's theorem. Given triangle <math>\triangle ABC</math> and point <math>P.</math> Let <math>PS \perp BC,</math> | ||
+ | <math>PR \perp AC, PQ \perp AB.</math> <math>P</math> doesn't have to be inside <math>\triangle ABC.</math> | ||
+ | |||
+ | Prove that <math>AQ^2 + BS^2 + CR^2 = AR^2 + BQ^2 + CS^2.</math> | ||
+ | |||
+ | b) Let <math>\triangle ABC</math> be the equilateral triangle. Prove that <math>AQ + BS + CR = \frac {3}{2} AB.</math> (The sum of the lengths of the alternating segments split by the perpendiculars from a point <math>P</math> within an equilateral triangle is equal to half the perimeter.) | ||
+ | |||
+ | <i><b>Proof</b></i> | ||
+ | |||
+ | a) <math>AP^2 = AQ^2 + PQ^2 = AR^2 + PR^2,</math> | ||
+ | <cmath>BP^2 = BQ^2 + PQ^2 = BS^2 + PS^2,</cmath> | ||
+ | <cmath>CP^2 = CR^2 + PR^2 = CS^2 + PS^2 \implies</cmath> | ||
+ | <math>AQ^2 + PQ^2 + BS^2 + PS^2 + CR^2 + PR^2 = AR^2 + PR^2 + BQ^2 + PQ^2 + CS^2 + PS^2,</math> | ||
+ | <cmath>AQ^2 + BS^2 + CR^2 = AR^2 + BQ^2 + CS^2.</cmath> | ||
+ | b) <math>AQ + BQ = BS + CS = CR + AR = AB = AC = BC,</math> | ||
+ | <cmath>AQ^2 + BQ^2 + 2 AQ \cdot BQ + BS^2 + CS^2 + 2 BS \cdot CS + AR^2 + CR^2+ 2 AR \cdot CR = 3 AB^2.</cmath> | ||
+ | [[File:2023 AIME I 11.png|350px|right]] | ||
+ | <cmath>2AQ^2 + 2 AQ \cdot BQ + 2 BS^2 + 2 BS \cdot CS + 2 CR^2 + 2 AR \cdot CR = 3 AB^2.</cmath> | ||
+ | <cmath>AQ (AQ + BQ) + BS (BS + CS) + CR (AR + CR) = \frac {3}{2} AB^2.</cmath> | ||
+ | <cmath>AQ \cdot AB + BS \cdot BC + CR \cdot AC = \frac {3}{2} AB^2.</cmath> | ||
+ | <cmath>AQ + BS + CR = \frac {3}{2} AB.</cmath> | ||
+ | |||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | |||
+ | ==Solution 4 (Law of Cosines)== | ||
+ | This solution is inspired by AIME 1999 Problem 14 Solution 2 (a similar question) | ||
Draw line segments from <math>P</math> to points <math>A</math>, <math>B</math>, and <math>C</math>. And label the angle measure of <math>\angle{BFP}</math>, <math>\angle{CDP}</math>, and <math>\angle{AEP}</math> to be <math>\alpha</math> | Draw line segments from <math>P</math> to points <math>A</math>, <math>B</math>, and <math>C</math>. And label the angle measure of <math>\angle{BFP}</math>, <math>\angle{CDP}</math>, and <math>\angle{AEP}</math> to be <math>\alpha</math> | ||
− | Using Law of Cosines (note that <math>cos{\angle{AFP}}=cos{\angle{BDP}}=cos{\angle{CEP}}=cos{180^\circ-\alpha}=-cos{\alpha}</math>) | + | Using Law of Cosines (note that <math>\cos{\angle{AFP}}=\cos{\angle{BDP}}=\cos{\angle{CEP}}=\cos{180^\circ-\alpha}=-\cos{\alpha}</math>) |
<cmath> | <cmath> | ||
\begin{align*} | \begin{align*} | ||
− | (1) BP^2 &= FP^2+15^2-2 | + | (1) \ BP^2 &= FP^2+15^2-2\cdot FP\cdot15\cdot\cos(\alpha)\\ |
− | (2) BP^2 &= DP^2+7^2+2 | + | (2) \ BP^2 &= DP^2+7^2+2\cdot DP\cdot7\cdot\cos(\alpha)\\ |
− | (3) CP^2 &= DP^2+48^2-2 | + | (3) \ CP^2 &= DP^2+48^2-2\cdot DP\cdot48\cdot\cos(\alpha)\\ |
− | (4) CP^2 &= EP^2+30^2+2 | + | (4) \ CP^2 &= EP^2+30^2+2\cdot EP\cdot30\cdot\cos(\alpha)\\ |
− | (5) AP^2 &= EP^2+25^2-2 | + | (5) \ AP^2 &= EP^2+25^2-2\cdot EP\cdot25\cdot\cos(\alpha)\\ |
− | (6) AP^2 &= FP^2+40^2+2 | + | (6) \ AP^2 &= FP^2+40^2+2\cdot FP\cdot40\cdot\cos(\alpha)\\ |
\end{align*} | \end{align*} | ||
</cmath> | </cmath> | ||
− | We can perform this operation | + | We can perform this operation <math>(1) - (2) + (3) - (4) + (5) - (6)</math>: |
Leaving us with (after combining and simplifying) | Leaving us with (after combining and simplifying) | ||
− | + | <cmath>\cos{\alpha}=\frac{-11}{2\cdot(DP+EP+FP)}</cmath> | |
− | <cmath> | ||
− | |||
− | \cos{\alpha}=\frac{-11}{2 | ||
− | |||
− | </cmath> | ||
Therefore, we want to solve for <math>DP+EP+FP</math> | Therefore, we want to solve for <math>DP+EP+FP</math> | ||
− | Notice that <math>\angle{ | + | Notice that <math>\angle{DPE}=\angle{EPF}=\angle{FPD}=120^\circ</math> |
− | We can use Law of Cosines again to solve for the sides of DEF, which have side lengths of 13, 42, and 35, and area <math>120\sqrt{3}</math>. | + | We can use Law of Cosines again to solve for the sides of <math>\triangle{DEF}</math>, which have side lengths of <math>13</math>, <math>42</math>, and <math>35</math>, and area <math>120\sqrt{3}</math>. |
Label the lengths of <math>PD</math>, <math>PE</math>, and <math>PF</math> to be <math>x</math>, <math>y</math>, and <math>z</math>. | Label the lengths of <math>PD</math>, <math>PE</math>, and <math>PF</math> to be <math>x</math>, <math>y</math>, and <math>z</math>. | ||
Line 121: | Line 221: | ||
<cmath> | <cmath> | ||
\begin{align*} | \begin{align*} | ||
− | [\triangle{DEF}] &= \frac{1}{2} | + | [\triangle{DEF}] &= \frac{1}{2}\cdot\sin{120°}\cdot(xy+yz+zx) = 120\sqrt{3} |
\\ | \\ | ||
− | xy+yz+zx &= 2^5 | + | xy+yz+zx &= 2^5\cdot3\cdot5 |
\end{align*} | \end{align*} | ||
</cmath> | </cmath> | ||
Line 131: | Line 231: | ||
<cmath> | <cmath> | ||
\begin{align*} | \begin{align*} | ||
− | x^2+y^2+xy=42^2\\ | + | x^2+y^2+xy&=42^2\\ |
− | y^2+z^2+yz=35^2\\ | + | y^2+z^2+yz&=35^2\\ |
− | z^2+x^2+zx=13^2\\ | + | z^2+x^2+zx&=13^2\\ |
\end{align*} | \end{align*} | ||
</cmath> | </cmath> | ||
Line 145: | Line 245: | ||
(x+y+z)^2 &= \frac{x^2+y^2+x+y^2+z^2+yz+z^2+x^2+3(zx+xy+yz+zx)}{2} | (x+y+z)^2 &= \frac{x^2+y^2+x+y^2+z^2+yz+z^2+x^2+3(zx+xy+yz+zx)}{2} | ||
\\ | \\ | ||
− | (x+y+z)^2 &= \frac{42^2+35^2+13^2+3 | + | (x+y+z)^2 &= \frac{42^2+35^2+13^2+3\cdot2^5\cdot3\cdot5}{2} |
\\ | \\ | ||
(x+y+z)^2 &= 2299 | (x+y+z)^2 &= 2299 | ||
Line 157: | Line 257: | ||
<cmath> | <cmath> | ||
\begin{align*} | \begin{align*} | ||
− | \cos{\alpha} = \frac{-1}{2\sqrt{19}}\\ | + | \cos{\alpha} &= \frac{-1}{2\sqrt{19}}\\ |
− | \sin{\alpha} = \frac{5\sqrt{3}}{2\sqrt{19}} | + | \sin{\alpha} &= \frac{5\sqrt{3}}{2\sqrt{19}} |
\end{align*} | \end{align*} | ||
</cmath> | </cmath> | ||
− | Giving us | + | Giving us <cmath>\tan^2{\alpha}=\boxed{075}</cmath> |
+ | |||
+ | ~[[Daniel Zhou's Profile|Danielzh]] | ||
+ | |||
+ | ==Solution 5 (Combining Solutions 3 and 4)== | ||
+ | We begin by using the fact stated in Solution 3 that, for any point in an equilateral triangle, the lengths of the three perpendicular lines dropped to the sides of the triangle add up to the altitude of that triangle. To make things simple, let's assign <math>\angle AEP = \angle BFP = \angle CDP = \alpha</math>. We can label these three perpendiculars as: | ||
+ | <cmath>PD\cdot\sin{\alpha} + PE\cdot\sin{\alpha} + PF\cdot\sin{\alpha} = \dfrac{55 \sqrt{3}}{2}</cmath> | ||
+ | Simplifying, we get | ||
+ | <cmath>PD + PE + PF = \dfrac{55 \sqrt{3}}{2\cdot\sin{\alpha}}</cmath> | ||
+ | Now, as stated and quoting Solution 4, | ||
+ | "Draw line segments from <math>P</math> to points <math>A</math>, <math>B</math>, and <math>C</math>. [We know that] the angle measure of <math>\angle{AEP}</math>, <math>\angle{BFP}</math>, and <math>\angle{CDP}</math> is <math>\alpha</math> | ||
+ | |||
+ | Using Law of Cosines (note that <math>\cos{\angle{AFP}}=\cos{\angle{BDP}}=\cos{\angle{CEP}}=\cos{180^\circ-\alpha}=-\cos{\alpha}</math>) | ||
<cmath> | <cmath> | ||
\begin{align*} | \begin{align*} | ||
− | \ | + | (1) \ BP^2 &= FP^2+15^2-2\cdot FP\cdot15\cdot\cos(\alpha)\\ |
+ | (2) \ BP^2 &= DP^2+7^2+2\cdot DP\cdot7\cdot\cos(\alpha)\\ | ||
+ | (3) \ CP^2 &= DP^2+48^2-2\cdot DP\cdot48\cdot\cos(\alpha)\\ | ||
+ | (4) \ CP^2 &= EP^2+30^2+2\cdot EP\cdot30\cdot\cos(\alpha)\\ | ||
+ | (5) \ AP^2 &= EP^2+25^2-2\cdot EP\cdot25\cdot\cos(\alpha)\\ | ||
+ | (6) \ AP^2 &= FP^2+40^2+2\cdot FP\cdot40\cdot\cos(\alpha)\\ | ||
\end{align*} | \end{align*} | ||
</cmath> | </cmath> | ||
− | ~ | + | We can perform this operation <math>(1) - (2) + (3) - (4) + (5) - (6)</math>: |
+ | |||
+ | Leaving us with (after combining and simplifying) | ||
+ | <cmath>PD + PE + PF=\frac{11}{2\cdot\cos{\alpha}}</cmath>". | ||
+ | |||
+ | Now, we can use our previous equation along with this one to get: | ||
+ | <cmath>\frac{11}{2\cdot\cos{\alpha}} = \dfrac{55 \sqrt{3}}{2\cdot\sin{\alpha}}</cmath>. | ||
+ | |||
+ | This equation becomes: | ||
+ | <cmath>\tan{\alpha} = 5\sqrt{3}</cmath> | ||
+ | As so, our answer is | ||
+ | <cmath> | ||
+ | \left(5\sqrt3\right)^2=\boxed{075}. | ||
+ | </cmath> | ||
+ | ~Solution by armang32324 (Mathemagics Club) | ||
+ | |||
+ | ==Solution 6== | ||
+ | By the law of cosines, | ||
+ | <cmath> | ||
+ | FE=\sqrt{AF^2+AE^2-2AF\cdot AE\cos\angle FAE}=35. | ||
+ | </cmath> | ||
+ | Similarly we get <math>FD=13</math> and <math>DE=42</math>. <math>\angle AEP=\angle BFP=\angle CDP\overset\triangle=\theta</math> implies that <math>AFPE</math>, <math>BDPF</math>, and <math>CDPE</math> are three cyclic quadrilaterals, as shown below: | ||
+ | <asy> | ||
+ | /* Made by MRENTHUSIASM */ | ||
+ | |||
+ | size(400); | ||
+ | |||
+ | pair A, B, C, D, E, F, P; | ||
+ | A = 55*sqrt(3)/3 * dir(90); | ||
+ | B = 55*sqrt(3)/3 * dir(210); | ||
+ | C = 55*sqrt(3)/3 * dir(330); | ||
+ | D = B + 7*dir(0); | ||
+ | E = A + 25*dir(C-A); | ||
+ | F = A + 40*dir(B-A); | ||
+ | P = intersectionpoints(Circle(D,54*sqrt(19)/19),Circle(F,5*sqrt(19)/19))[0]; | ||
+ | |||
+ | draw(anglemark(A,E,P,20),red); | ||
+ | draw(anglemark(B,F,P,20),red); | ||
+ | draw(anglemark(C,D,P,20),red); | ||
+ | add(pathticks(anglemark(A,E,P,20), n = 1, r = 0.2, s = 12, red)); | ||
+ | add(pathticks(anglemark(B,F,P,20), n = 1, r = 0.2, s = 12, red)); | ||
+ | add(pathticks(anglemark(C,D,P,20), n = 1, r = 0.2, s = 12, red)); | ||
+ | draw(A--B--C--cycle^^P--E^^P--F^^P--D); | ||
+ | draw(P--A^^P--B^^P--C,dashed); | ||
+ | draw(circumcircle(A,E,F)^^circumcircle(B,D,F)^^circumcircle(C,D,E),blue); | ||
+ | |||
+ | dot("$A$",A,1.5*dir(A),linewidth(4)); | ||
+ | dot("$B$",B,1.5*dir(B),linewidth(4)); | ||
+ | dot("$C$",C,1.5*dir(C),linewidth(4)); | ||
+ | dot("$D$",D,1.5*S,linewidth(4)); | ||
+ | dot("$E$",E,1.5*dir(30),linewidth(4)); | ||
+ | dot("$F$",F,1.5*dir(150),linewidth(4)); | ||
+ | dot("$P$",P,1.5*dir(-30),linewidth(4)); | ||
+ | |||
+ | label("$7$",midpoint(B--D),1.5*S,red); | ||
+ | label("$30$",midpoint(C--E),1.5*dir(30),red); | ||
+ | label("$40$",midpoint(A--F),1.5*dir(150),red); | ||
+ | </asy> | ||
+ | Using the law of sines in each, | ||
+ | <cmath> | ||
+ | \frac{AP}{35}=\frac{AP}{FE}=\frac{CP}{42}=\frac{CP}{ED}=\frac{BP}{13}=\frac{BP}{DF}=\frac{\sin\theta}{\sin\frac\pi3}. | ||
+ | </cmath> | ||
+ | So we can set <math>AP=35k</math>, <math>BP=13k</math>, and <math>CP=42k</math>. Let <math>PD=d</math>, <math>PE=e</math>, and <math>PF=f</math>. Applying Ptolemy theorem in the cyclic quadrilaterals, | ||
+ | <cmath> | ||
+ | \begin{cases}AP\cdot FE=AF\cdot PE+AE\cdot PF,\\CP\cdot ED=CE\cdot PD+CD\cdot PE,\\BP\cdot DF=BD\cdot PF+BF\cdot PD.\end{cases} | ||
+ | \implies | ||
+ | \begin{cases} | ||
+ | 1225k=40e+25f,\\1764k=30d+48e,\\169k=15d+7f, | ||
+ | \end{cases} | ||
+ | </cmath> | ||
+ | We can solve out <math>d=\frac{54k}5</math>, <math>e=30k</math>, <math>f=k</math>. By the law of cosines in <math>\triangle PEF</math>, <math>FE=\sqrt{900k^2+k^2-60k\cdot\left(\frac{-1}2\right)}=\sqrt{931}k</math>. The law of sines yield <math>\frac{\sin\angle AEP}{\sin\angle FAE}=\frac{AP}{FE}=\frac{35k}{\sqrt{931}k}=\frac{35}{\sqrt{931}}</math>. | ||
+ | Lastly, <math>\sin\angle AEP=\frac{5\sqrt{57}}{38}</math>, then <math>\tan\angle AEP=5\sqrt3</math>. The answer is | ||
+ | <cmath> | ||
+ | \left(5\sqrt3\right)^2=\boxed{075}. | ||
+ | </cmath> | ||
+ | |||
+ | ==Solution 7== | ||
+ | |||
+ | <math>P</math> is well known to be the Miquel point of triangle <math>DEF</math>. By Law of Cosines, <math>E F = 35</math>, <math>F D = 13</math>, <math>D E = 42</math>. Call <math>P D</math>, <math>P E</math>, <math>P F</math>: <math>x</math>, <math>y</math>, <math>z</math> respectively. Then we obtain that <math>x^2+xy+y^2 = 42^2</math>, <math>x^2+xz+z^2 = 13^2</math>, <math>y^2+yz+z^2 = 35^2</math>. Note that since the area of the triangle by sine area formula is <math>(xy + xz + yz)\left(\frac{\sqrt{3}}{4}\right)</math>, but by Heron's formula, the area of the triangle is <math>\sqrt{(45)(3)(32)(10)} = (5)(3)(8)\sqrt{3} = 120\sqrt{3}</math>. <math>xy+xz+yz = 480</math>, and so we obtain <math>x+y+z = 11\sqrt{19}</math> by adding all the equations together. Now, subtract any two equations from each other to obtain <math>(y-z)(11\sqrt{19}) = (55)(29)</math>, <math>(x-z)(11\sqrt{19}) = (7)(77)</math>, <math>x-z = \frac{49}{\sqrt{19}}</math>, <math>y-z = \frac{145}{\sqrt{19}}</math>, and <math>z = \frac{5}{\sqrt{19}}</math>, <math>y = \frac{150}{\sqrt{19}}</math>, and <math>x = \sqrt{54}{\sqrt{19}}</math>. Now we find PC through Ptolemy's theorem, do Law of Cosines, and we are finished. | ||
+ | |||
+ | ==Video Solution== | ||
+ | |||
+ | https://www.youtube.com/watch?v=EdwM8GpY_yc | ||
+ | |||
+ | ~MathProblemSolvingSkills.com | ||
+ | |||
+ | ==Animated Video Solution== | ||
+ | |||
+ | https://youtu.be/5d98iXeyu4E | ||
+ | |||
+ | ~Star League (https://starleague.us) | ||
+ | |||
+ | ==Video Solution by MOP 2024== | ||
+ | https://youtu.be/BYR3DollZeA | ||
==See also== | ==See also== |
Latest revision as of 22:55, 20 December 2024
Contents
Problem
Let be an equilateral triangle with side length Points and lie on and respectively, with and Point inside has the property that Find
Diagram
~MRENTHUSIASM
Solution 1 (Coordinates Bash)
By Miquel's theorem, (intersection of circles). The law of cosines can be used to compute , , and . Toss the points on the coordinate plane; let , , and , where we will find with .
By the extended law of sines, the radius of circle is . Its center lies on the line , and the origin is a point on it, so .
The radius of circle is . The origin is also a point on it, and its center is on the line , so .
The equations of the two circles are These equations simplify to Subtracting these two equations gives that both their points of intersection, and , lie on the line . Hence, . To scale, the configuration looks like the figure below:
Basic angle chasing gives Because which means that is cyclic, and that passes through the circumcircle of triangle Similar reasoning leads us to the fact that also passes through the circumcircles of triangles and which means that Continue as above.
Solution 2 (Vectors/Complex)
Denote .
In , we have . Thus,
Taking the real and imaginary parts, we get
In , analogous to the analysis of above, we get
Taking , we get
Taking , we get
Taking , we get
Therefore,
Therefore, .
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Solution 3 (Synthetic)
Drop the perpendiculars from to , , , and call them and respectively. This gives us three similar right triangles , , and
The sum of the perpendiculars to a point within an equilateral triangle is always constant, so we have that
The sum of the lengths of the alternating segments split by the perpendiculars from a point within an equilateral triangle is always equal to half the perimeter, so which means that
Finally,
Thus,
~anon
Claim
a) Carnot's theorem. Given triangle and point Let doesn't have to be inside
Prove that
b) Let be the equilateral triangle. Prove that (The sum of the lengths of the alternating segments split by the perpendiculars from a point within an equilateral triangle is equal to half the perimeter.)
Proof
a) b)
vladimir.shelomovskii@gmail.com, vvsss
Solution 4 (Law of Cosines)
This solution is inspired by AIME 1999 Problem 14 Solution 2 (a similar question)
Draw line segments from to points , , and . And label the angle measure of , , and to be
Using Law of Cosines (note that )
We can perform this operation :
Leaving us with (after combining and simplifying)
Therefore, we want to solve for
Notice that
We can use Law of Cosines again to solve for the sides of , which have side lengths of , , and , and area .
Label the lengths of , , and to be , , and .
Therefore, using the area formula,
In addition, we know that
By using Law of Cosines for , , and respectively
Because we want , which is , we see that
So plugging the results back into the equation before, we get
Giving us
Solution 5 (Combining Solutions 3 and 4)
We begin by using the fact stated in Solution 3 that, for any point in an equilateral triangle, the lengths of the three perpendicular lines dropped to the sides of the triangle add up to the altitude of that triangle. To make things simple, let's assign . We can label these three perpendiculars as: Simplifying, we get Now, as stated and quoting Solution 4, "Draw line segments from to points , , and . [We know that] the angle measure of , , and is
Using Law of Cosines (note that )
We can perform this operation :
Leaving us with (after combining and simplifying) ".
Now, we can use our previous equation along with this one to get: .
This equation becomes: As so, our answer is ~Solution by armang32324 (Mathemagics Club)
Solution 6
By the law of cosines, Similarly we get and . implies that , , and are three cyclic quadrilaterals, as shown below: Using the law of sines in each, So we can set , , and . Let , , and . Applying Ptolemy theorem in the cyclic quadrilaterals, We can solve out , , . By the law of cosines in , . The law of sines yield . Lastly, , then . The answer is
Solution 7
is well known to be the Miquel point of triangle . By Law of Cosines, , , . Call , , : , , respectively. Then we obtain that , , . Note that since the area of the triangle by sine area formula is , but by Heron's formula, the area of the triangle is . , and so we obtain by adding all the equations together. Now, subtract any two equations from each other to obtain , , , , and , , and . Now we find PC through Ptolemy's theorem, do Law of Cosines, and we are finished.
Video Solution
https://www.youtube.com/watch?v=EdwM8GpY_yc
~MathProblemSolvingSkills.com
Animated Video Solution
~Star League (https://starleague.us)
Video Solution by MOP 2024
See also
2023 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.