Difference between revisions of "1990 AIME Problems/Problem 5"
m (c) |
m (bit better) |
||
Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
− | The [[prime factorization]] of <math>75 = 3^15^2</math>. | + | The [[prime factorization]] of <math>75 = 3^15^2 = (2+1)(4+1)(4+1)</math>. For <math>n</math> to have exactly <math>75</math> integral divisors, we need to have <math>n = p_1^{e_1-1}p_2^{e_2-1}\cdots</math> such that <math>e_1e_2 \cdots = 75</math>. Since <math>75|n</math>, two of the [[prime]] [[factor]]s must be <math>3</math> and <math>5</math>. To minimize <math>n</math>, we can introduce a third prime factor, <math>2</math>. Also to minimize <math>n</math>, we want <math>5</math>, the greatest of all the factors, to be raised to the least power. Therefore, <math>n = 2^43^45^2</math> and <math>\frac{n}{75} = \frac{2^43^45^2}{3 \cdot 5^2} = 16 \cdot 27 = \boxed{432}</math>. |
== See also == | == See also == |
Revision as of 17:47, 11 April 2008
Problem
Let be the smallest positive integer that is a multiple of and has exactly positive integral divisors, including and itself. Find .
Solution
The prime factorization of . For to have exactly integral divisors, we need to have such that . Since , two of the prime factors must be and . To minimize , we can introduce a third prime factor, . Also to minimize , we want , the greatest of all the factors, to be raised to the least power. Therefore, and .
See also
1990 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |