Difference between revisions of "2008 USAMO Problems/Problem 2"
I like pie (talk | contribs) (Fixed link) |
(I'll construct T later -_-) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | (''Zuming Feng'') Let <math>ABC</math> be an acute, scalene triangle, and let <math>M</math>, <math>N</math>, and <math>P</math> be the midpoints of <math>\overline{BC}</math>, <math>\overline{CA}</math>, and <math>\overline{AB}</math>, respectively. Let the perpendicular | + | (''Zuming Feng'') Let <math>ABC</math> be an acute, [[scalene]] triangle, and let <math>M</math>, <math>N</math>, and <math>P</math> be the midpoints of <math>\overline{BC}</math>, <math>\overline{CA}</math>, and <math>\overline{AB}</math>, respectively. Let the [[perpendicular]] [[bisect]]ors of <math>\overline{AB}</math> and <math>\overline{AC}</math> intersect ray <math>AM</math> in points <math>D</math> and <math>E</math> respectively, and let lines <math>BD</math> and <math>CE</math> intersect in point <math>F</math>, inside of triangle <math>ABC</math>. Prove that points <math>A</math>, <math>N</math>, <math>F</math>, and <math>P</math> all lie on one circle. |
__TOC__ | __TOC__ | ||
== Solution == | == Solution == | ||
=== Solution 1 === | === Solution 1 === | ||
+ | <center><asy> | ||
+ | /* setup and variables */ | ||
+ | size(280); | ||
+ | pathpen = black + linewidth(0.7); pointpen = black; pen s = fontsize(8); | ||
+ | pair B=(0,0),C=(5,0),A=(4,4); /* A.x > C.x/2 */ | ||
+ | /* construction and drawing */ | ||
+ | pair P=(A+B)/2,M=(B+C)/2,N=(A+C)/2,D=IP(A--M,P--P+5*(P-bisectorpoint(A,B))),E=IP(A--M,N--N+5*(bisectorpoint(A,C)-N)),F=IP(B--B+5*(D-B),C--C+5*(E-C)),O=circumcenter(A,B,C); | ||
+ | D(MP("A",A,(0,1),s)--MP("B",B,SW,s)--MP("C",C,SE,s)--A--MP("M",M,s)); | ||
+ | D(C--D(MP("E",E,NW,s))--MP("N",N,(1,0),s)--D(MP("O",O,SW,s))); | ||
+ | D(D(MP("D",D,SE,s))--MP("P",P,W,s)); | ||
+ | D(B--D(MP("F",F,s))); D(O--F--A,linetype("4 4")+linewidth(0.7)); | ||
+ | D(circumcircle(A,P,N),linetype("4 4")+linewidth(0.7)); | ||
+ | D(rightanglemark(A,P,D,3.5));D(rightanglemark(A,N,E,3.5)); | ||
+ | picture p = new picture; | ||
+ | draw(p,circumcircle(B,O,C),linetype("1 4")+linewidth(0.7)); | ||
+ | draw(p,circumcircle(A,B,C),linetype("1 4")+linewidth(0.7)); | ||
+ | clip(p,B+(-5,0)--B+(-5,A.y+2)--C+(5,A.y+2)--C+(5,0)--cycle); add(p); | ||
+ | </asy></center> | ||
+ | |||
+ | Construct <math>T</math> on <math>AM</math> such that <math>\angle BCT = \angle ACF</math>. Then <math>\angle BCT = \angle CAM</math>. Then <math>\triangle AMC\sim\triangle CMT</math>, so <math>\frac {AM}{CM} = \frac {CM}{TM}</math>, or <math>\frac {AM}{BM} = \frac {BM}{TM}</math>. Then <math>\triangle AMB\sim\triangle BMT</math>, so <math>\angle CBT = \angle BAM = \angle FBA</math>. Then we have | ||
+ | |||
+ | <math>\angle CBT = \angle ABF</math> and <math>\angle BCT = \angle ACF</math>. So <math>T</math> and <math>F</math> are [[isogonal conjugate|isogonally conjugate]]. Thus <math>\angle BAF = \angle CAM</math>. Then | ||
+ | |||
+ | <math>\angle AFB = 180 - \angle ABF - \angle BAF = 180 - \angle BAM - \angle CAM = 180 - \angle BAC</math>. | ||
+ | |||
+ | If <math>O</math> is the [[circumcenter]] of <math>\triangle ABC</math> then <math>\angle BFC = 2\angle BAC = \angle BOC</math> so <math>BFOC</math> is cyclic. Then <math>\angle BFO = 180 - \angle BOC = 180 - (90 - \angle BAC) = 90 + \angle BAC</math>. | ||
+ | |||
+ | Then <math>\angle AFO = 360 - \angle AFB - \angle BFO = 360 - (180 - \angle BAC) - (90 + \angle BAC) = 90</math>. Then <math>\triangle AFO</math> is a right triangle. | ||
+ | |||
+ | Now by the [[homothety]] centered at <math>A</math> with ratio <math>\frac {1}{2}</math>, <math>B</math> is taken to <math>P</math> and <math>C</math> is taken to <math>N</math>. Thus <math>O</math> is taken to the circumcenter of <math>\triangle APN</math> and is the midpoint of <math>AO</math>, which is also the circumcenter of <math>\triangle AFO</math>, so <math>A,P,N,F,O</math> all lie on a circle. | ||
+ | |||
=== Solution 2 === | === Solution 2 === | ||
Revision as of 19:12, 1 May 2008
Problem
(Zuming Feng) Let be an acute, scalene triangle, and let , , and be the midpoints of , , and , respectively. Let the perpendicular bisectors of and intersect ray in points and respectively, and let lines and intersect in point , inside of triangle . Prove that points , , , and all lie on one circle.
Contents
[hide]Solution
Solution 1
Construct on such that . Then . Then , so , or . Then , so . Then we have
and . So and are isogonally conjugate. Thus . Then
.
If is the circumcenter of then so is cyclic. Then .
Then . Then is a right triangle.
Now by the homothety centered at with ratio , is taken to and is taken to . Thus is taken to the circumcenter of and is the midpoint of , which is also the circumcenter of , so all lie on a circle.
Solution 2
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
Resources
2008 USAMO (Problems • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
- <url>viewtopic.php?t=202907 Discussion on AoPS/MathLinks</url>