Difference between revisions of "1995 AHSME Problems/Problem 19"

(New page: ==Problem== Equilateral triangle <math>DEF</math> is inscribed in equilateral triangle <math>ABC</math> such that <math>\overline{DE} \perp \overline{BC}</math>. The reatio of the area of ...)
 
(See also)
Line 8: Line 8:
  
 
==See also==
 
==See also==
 +
{{AHSME box|year=1995|num-b=18|num-a=20}}
 +
 +
[[Category:Introductor Geometry Problems]]

Revision as of 08:46, 24 May 2008

Problem

Equilateral triangle $DEF$ is inscribed in equilateral triangle $ABC$ such that $\overline{DE} \perp \overline{BC}$. The reatio of the area of $\triangle DEF$ to the area of $\triangle ABC$ is

$\mathrm{(A) \ \frac {1}{6} } \qquad \mathrm{(B) \ \frac {1}{4} } \qquad \mathrm{(C) \ \frac {1}{3} } \qquad \mathrm{(D) \ \frac {2}{5} } \qquad \mathrm{(E) \ \frac {1}{2} }$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

1995 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions