Difference between revisions of "2003 AIME I Problems/Problem 7"

m (img)
(asymptote)
Line 3: Line 3:
  
 
== Solution ==
 
== Solution ==
[[Image:2003_I_AIME-7.png]]
+
<center><asy>
 +
size(220);
 +
pointpen = black; pathpen = black + linewidth(0.7);
 +
pair O=(0,0),A=(-15,0),B=(-6,0),C=(15,0),D=(0,8);
 +
D(D(MP("A",A))--D(MP("C",C))--D(MP("D",D,NE))--cycle);
 +
D(D(MP("B",B))--D); D((0,-4)--(0,12),linetype("4 4")+linewidth(0.7));
 +
MP("6",B/2); MP("15",C/2); MP("9",(A+B)/2);
 +
</asy></center> <!-- Asymptote replacement for Image:2003_I_AIME-7.png by azjps -->
  
Denote the height of <math>\triangle ACD</math> as <math>h</math>, <math>x = AD = CD</math>, and <math>y = BD</math>. Using the Pythagorean theorem, we find that <math>h^2 = y^2 - 6^2</math> and <math>h^2 = x^2 - 15^2</math>. Thus, <math>y^2 - 36 = x^2 - 225 \Longrightarrow x^2 - y^2 = 189</math>. The LHS is [[difference of squares]], so <math>(x + y)(x - y) = 189</math>. As both <math>x,\ y</math> are integers, <math>x+y,\ x-y</math> must be integral divisors of 189.  
+
Denote the height of <math>\triangle ACD</math> as <math>h</math>, <math>x = AD = CD</math>, and <math>y = BD</math>. Using the [[Pythagorean theorem]], we find that <math>h^2 = y^2 - 6^2</math> and <math>h^2 = x^2 - 15^2</math>. Thus, <math>y^2 - 36 = x^2 - 225 \Longrightarrow x^2 - y^2 = 189</math>. The LHS is [[difference of squares]], so <math>(x + y)(x - y) = 189</math>. As both <math>x,\ y</math> are integers, <math>x+y,\ x-y</math> must be integral divisors of <math>189</math>.  
  
The divisors of 189 are <math>(1,189)\ (3,63)\ (7,27)\ (9,21)</math>. This yields the four potential sets for <math>(x,y)</math> as <math>(95,94)\ (33,30)\ (17,10)\ (15,6)</math>. The last is not a possibility since it simply [[degenerate]]s into a [[line]]. The sum of the three possible perimeters of <math>
+
The pairs of divisors of <math>189</math> are <math>(1,189)\ (3,63)\ (7,27)\ (9,21)</math>. This yields the four potential sets for <math>(x,y)</math> as <math>(95,94)\ (33,30)\ (17,10)\ (15,6)</math>. The last is not a possibility since it simply [[degenerate]]s into a [[line]]. The sum of the three possible perimeters of <math>
\triangle ACD</math> is equal to <math>3(AC) + 2(x_1 + x_2 + x_3) = 90 + 2(95 + 33 + 17) = 380</math>.  
+
\triangle ACD</math> is equal to <math>3(AC) + 2(x_1 + x_2 + x_3) = 90 + 2(95 + 33 + 17) = \boxed{380}</math>.  
  
 
== See also ==
 
== See also ==

Revision as of 14:24, 10 June 2008

Problem

Point $B$ is on $\overline{AC}$ with $AB = 9$ and $BC = 21.$ Point $D$ is not on $\overline{AC}$ so that $AD = CD,$ and $AD$ and $BD$ are integers. Let $s$ be the sum of all possible perimeters of $\triangle ACD$. Find $s.$

Solution

[asy] size(220); pointpen = black; pathpen = black + linewidth(0.7); pair O=(0,0),A=(-15,0),B=(-6,0),C=(15,0),D=(0,8); D(D(MP("A",A))--D(MP("C",C))--D(MP("D",D,NE))--cycle); D(D(MP("B",B))--D); D((0,-4)--(0,12),linetype("4 4")+linewidth(0.7)); MP("6",B/2); MP("15",C/2); MP("9",(A+B)/2); [/asy]

Denote the height of $\triangle ACD$ as $h$, $x = AD = CD$, and $y = BD$. Using the Pythagorean theorem, we find that $h^2 = y^2 - 6^2$ and $h^2 = x^2 - 15^2$. Thus, $y^2 - 36 = x^2 - 225 \Longrightarrow x^2 - y^2 = 189$. The LHS is difference of squares, so $(x + y)(x - y) = 189$. As both $x,\ y$ are integers, $x+y,\ x-y$ must be integral divisors of $189$.

The pairs of divisors of $189$ are $(1,189)\ (3,63)\ (7,27)\ (9,21)$. This yields the four potential sets for $(x,y)$ as $(95,94)\ (33,30)\ (17,10)\ (15,6)$. The last is not a possibility since it simply degenerates into a line. The sum of the three possible perimeters of $\triangle ACD$ is equal to $3(AC) + 2(x_1 + x_2 + x_3) = 90 + 2(95 + 33 + 17) = \boxed{380}$.

See also

2003 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions