GET READY FOR THE AMC 10 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 10 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2009 AMC 10A Problems"

(Problem 22)
(Problem 20)
Line 378: Line 378:
  
 
== Problem 20 ==
 
== Problem 20 ==
 +
 +
Andrea and Lauren are <math>20</math> kilometers apart. They bike toward one another with Andrea traveling three times as fast as Lauren, and the distance between them decreasing at a rate of <math>1</math> kilometer per minute. After <math>5</math> minutes, Andrea stops biking because of a flat tire and waits for Lauren. After how many minutes from the time they started to bike does Lauren reach Andrea?
  
 
<math>
 
<math>
\mathrm{(A)}\  
+
\mathrm{(A)}\ 20
 
\qquad
 
\qquad
\mathrm{(B)}\  
+
\mathrm{(B)}\ 30
 
\qquad
 
\qquad
\mathrm{(C)}\  
+
\mathrm{(C)}\ 55
 
\qquad
 
\qquad
\mathrm{(D)}\  
+
\mathrm{(D)}\ 65
 
\qquad
 
\qquad
\mathrm{(E)}\  
+
\mathrm{(E)}\ 80
 
</math>
 
</math>
  

Revision as of 07:13, 13 February 2009

Problem 1

One can holds $12$ ounces of soda. What is the minimum number of cans needed to provide a gallon (128 ounces) of soda?

$\mathrm{(A)}\ 7 \qquad \mathrm{(B)}\ 8 \qquad \mathrm{(C)}\ 9 \qquad \mathrm{(D)}\ 10 \qquad \mathrm{(E)}\ 11$

Solution

Problem 2

Four coins are picked out of a piggy bank that contains a collection of pennies, nickels, dimes and quarters. Which of the following could not be the total value of the four coins, in cents?

$\mathrm{(A)}\ 15 \qquad \mathrm{(B)}\ 25 \qquad \mathrm{(C)}\ 35 \qquad \mathrm{(D)}\ 45 \qquad \mathrm{(E)}\ 55$

Solution

Problem 3

Which of the following is equal to $1 + \frac{1}{1+\frac{1}{1+1}}$?

$\mathrm{(A)}\ \frac{5}{4} \qquad \mathrm{(B)}\ \frac{3}{2} \qquad \mathrm{(C)}\ \frac{5}{3} \qquad \mathrm{(D)}\ 2 \qquad \mathrm{(E)}\ 3$

Solution

Problem 4

Eric plans to compete in a triathalon. He can average $2$ miles per hour in the $\frac{1}{4}$-mile swim and $6$ miles per hour in the $3$-mile run. His goal is to finish the triathlon in $2$ hours. To accomplish his goal what must his average speed in miles per hour, be for the $15$-mile bicycle ride?

$\mathrm{(A)}\ \frac{120}{11} \qquad \mathrm{(B)}\ 11 \qquad \mathrm{(C)}\ \frac{56}{5} \qquad \mathrm{(D)}\ \frac{45}{4} \qquad \mathrm{(E)}\ 12$

Solution

Problem 5

What is the sum of the digits of the square of $111,111,111$?

$\mathrm{(A)}\ 18 \qquad \mathrm{(B)}\ 27 \qquad \mathrm{(C)}\ 45 \qquad \mathrm{(D)}\ 63 \qquad \mathrm{(E)}\ 81$

Solution

Problem 6

A circle of radius $2$ is inscribed in a semicircle, as shown. The area inside the semicircle but outside the circle is shaded. What fraction of the semicircle's area is shaded?

[asy] unitsize(6mm); defaultpen(linewidth(.8pt)+fontsize(8pt)); dotfactor=4;  filldraw(Arc((0,0),4,0,180)--cycle,gray,black); filldraw(Circle((0,2),2),white,black); dot((0,2)); draw((0,2)--((0,2)+2*dir(60))); label("$2$",midpoint((0,2)--((0,2)+2*dir(60))),SE); [/asy]

$\mathrm{(A)}\ \frac{1}{2} \qquad \mathrm{(B)}\ \frac{\pi}{6} \qquad \mathrm{(C)}\ \frac{2}{\pi} \qquad \mathrm{(D)}\ \frac{2}{3} \qquad \mathrm{(E)}\ \frac{3}{\pi}$

Solution

Problem 7

A carton contains milk that is $2$% fat, an amount that is $40$% less fat than the amount contained in a carton of whole milk. What is the percentage of fat in whole milk?

$\mathrm{(A)}\ \frac{12}{5} \qquad \mathrm{(B)}\ \frac{10}{3} \qquad \mathrm{(C)}\ 9 \qquad \mathrm{(D)}\ 38 \qquad \mathrm{(E)}\ 42$

Solution

Problem 8

Three Generations of the Wen family are going to the movies, two from each generation. The two members of the youngest generation receive a $50$% discount as children. The two members of the oldest generation receive a $25\%$ discount as senior citizens. The two members of the middle generation receive no discount. Grandfather Wen, whose senior ticket costs <dollar/>$6.00$, is paying for everyone. How many dollars must he pay?

$\mathrm{(A)}\ 34 \qquad \mathrm{(B)}\ 36 \qquad \mathrm{(C)}\ 42 \qquad \mathrm{(D)}\ 46 \qquad \mathrm{(E)}\ 48$

Solution

Problem 9

Positive integers $a$, $b$, and $2009$, with $a<b<2009$, form a geometric sequence with an integer ratio. What is $a$?

$\mathrm{(A)}\ 7 \qquad \mathrm{(B)}\ 41 \qquad \mathrm{(C)}\ 49 \qquad \mathrm{(D)}\ 289 \qquad \mathrm{(E)}\ 2009$

Solution

Problem 10

$\mathrm{(A)}\  \qquad \mathrm{(B)}\  \qquad \mathrm{(C)}\  \qquad \mathrm{(D)}\  \qquad \mathrm{(E)}$

Solution

Problem 11

One dimension of a cube is increased by $1$, another is decreased by $1$, and the third is left unchanged. The volume of the new rectangular solid is $5$ less than that of the cube. What was the volume of the cube?

$\mathrm{(A)}\ 8 \qquad \mathrm{(B)}\ 27 \qquad \mathrm{(C)}\ 64 \qquad \mathrm{(D)}\ 125 \qquad \mathrm{(E)}\ 216$

Solution

Problem 12

In quadrilateral $ABCD$, $AB = 5$, $BC = 17$, $CD = 5$, $DA = 9$, and $BD$ is an integer. What is $BD$?

[asy] unitsize(4mm); defaultpen(linewidth(.8pt)+fontsize(8pt)); dotfactor=4;  pair C=(0,0), B=(17,0); pair D=intersectionpoints(Circle(C,5),Circle(B,13))[0]; pair A=intersectionpoints(Circle(D,9),Circle(B,5))[0]; pair[] dotted={A,B,C,D};  draw(D--A--B--C--D--B); dot(dotted); label("$D$",D,NW); label("$C$",C,W); label("$B$",B,E); label("$A$",A,NE); [/asy]

$\mathrm{(A)}\ 11 \qquad \mathrm{(B)}\ 12 \qquad \mathrm{(C)}\ 13 \qquad \mathrm{(D)}\ 14 \qquad \mathrm{(E)}\ 15$

Solution

Problem 13

Suppose that $P = 2^m$ and $Q = 3^n$. Which of the following is equal to $12^{mn}$ for every pair of integers $(m,n)$?

$\mathrm{(A)}\ P^2Q \qquad \mathrm{(B)}\ P^nQ^m \qquad \mathrm{(C)}\ P^nQ^{2m} \qquad \mathrm{(D)}\ P^{2m}Q^n \qquad \mathrm{(E)}\ P^{2n}Q^m$

Solution

Problem 14

$\mathrm{(A)}\  \qquad \mathrm{(B)}\  \qquad \mathrm{(C)}\  \qquad \mathrm{(D)}\  \qquad \mathrm{(E)}$

Solution

Problem 15

The figures $F_1$, $F_2$, $F_3$, and $F_4$ shown are the first in a sequence of figures. For $n\ge3$, $F_n$ is constructed from $F_{n - 1}$ by surrounding it with a square and placing one more diamond on each side of the new square than $F_{n - 1}$ had on each side of its outside square. For example, figure $F_3$ has $13$ diamonds. How many diamonds are there in figure $F_{20}$?

[asy] unitsize(3mm); defaultpen(linewidth(.8pt)+fontsize(8pt));  path d=(1/2,0)--(0,sqrt(3)/2)--(-1/2,0)--(0,-sqrt(3)/2)--cycle; marker m=marker(scale(5)*d,Fill); path f1=(0,0); path f2=(0,0)--(-1,1)--(1,1)--(1,-1)--(-1,-1); path[] g2=(-1,1)--(-1,-1)--(0,0)^^(1,-1)--(0,0)--(1,1); path f3=f2--(-2,-2)--(-2,0)--(-2,2)--(0,2)--(2,2)--(2,0)--(2,-2)--(0,-2); path[] g3=g2^^(-2,-2)--(0,-2)^^(2,-2)--(1,-1)^^(1,1)--(2,2)^^(-1,1)--(-2,2); path[] f4=f3^^(-3,-3)--(-3,-1)--(-3,1)--(-3,3)--(-1,3)--(1,3)--(3,3)-- (3,1)--(3,-1)--(3,-3)--(1,-3)--(-1,-3); path[] g4=g3^^(-2,-2)--(-3,-3)--(-1,-3)^^(3,-3)--(2,-2)^^(2,2)--(3,3)^^ (-2,2)--(-3,3);  draw(f1,m); draw(shift(5,0)*f2,m); draw(shift(5,0)*g2); draw(shift(12,0)*f3,m); draw(shift(12,0)*g3); draw(shift(21,0)*f4,m); draw(shift(21,0)*g4); label("$F_1$",(0,-4)); label("$F_2$",(5,-4)); label("$F_3$",(12,-4)); label("$F_4$",(21,-4)); [/asy]

$\mathrm{(A)}\ 401 \qquad \mathrm{(B)}\ 485 \qquad \mathrm{(C)}\ 585 \qquad \mathrm{(D)}\ 626 \qquad \mathrm{(E)}\ 761$

Solution

Problem 16

$\mathrm{(A)}\  \qquad \mathrm{(B)}\  \qquad \mathrm{(C)}\  \qquad \mathrm{(D)}\  \qquad \mathrm{(E)}$

Solution

Problem 17

$\mathrm{(A)}\  \qquad \mathrm{(B)}\  \qquad \mathrm{(C)}\  \qquad \mathrm{(D)}\  \qquad \mathrm{(E)}$

Solution

Problem 18

$\mathrm{(A)}\  \qquad \mathrm{(B)}\  \qquad \mathrm{(C)}\  \qquad \mathrm{(D)}\  \qquad \mathrm{(E)}$

Solution

Problem 19

$\mathrm{(A)}\  \qquad \mathrm{(B)}\  \qquad \mathrm{(C)}\  \qquad \mathrm{(D)}\  \qquad \mathrm{(E)}$

Solution

Problem 20

Andrea and Lauren are $20$ kilometers apart. They bike toward one another with Andrea traveling three times as fast as Lauren, and the distance between them decreasing at a rate of $1$ kilometer per minute. After $5$ minutes, Andrea stops biking because of a flat tire and waits for Lauren. After how many minutes from the time they started to bike does Lauren reach Andrea?

$\mathrm{(A)}\ 20 \qquad \mathrm{(B)}\ 30 \qquad \mathrm{(C)}\ 55 \qquad \mathrm{(D)}\ 65 \qquad \mathrm{(E)}\ 80$

Solution

Problem 21

$\mathrm{(A)}\  \qquad \mathrm{(B)}\  \qquad \mathrm{(C)}\  \qquad \mathrm{(D)}\  \qquad \mathrm{(E)}$

Solution

Problem 22

Two cubical dice each have removable numbers $1$ through $6$. The twelve numbers on the two dice are removed, put into a bag, then drawn one at a time and randomly reattached to the faces of the cubes, one number to each face. The dice are then rolled and the numbers on the two top faces are added. What is the probability that the sum is $7$?

$\mathrm{(A)}\ \frac{1}{9} \qquad \mathrm{(B)}\ \frac{1}{8} \qquad \mathrm{(C)}\ \frac{1}{6} \qquad \mathrm{(D)}\ \frac{2}{11} \qquad \mathrm{(E)}\ \frac{1}{5}$

Solution

Problem 23

$\mathrm{(A)}\  \qquad \mathrm{(B)}\  \qquad \mathrm{(C)}\  \qquad \mathrm{(D)}\  \qquad \mathrm{(E)}$

Solution

Problem 24

Three distinct vertices of a cube are chosen at random. What is the probability that the plane determined by these three vertices contains points inside the cube?

$\mathrm{(A)}\ \frac{1}{4} \qquad \mathrm{(B)}\ \frac{3}{8} \qquad \mathrm{(C)}\ \frac{4}{7} \qquad \mathrm{(D)}\ \frac{5}{7} \qquad \mathrm{(E)}\ \frac{3}{4}$

Solution

Problem 25

For $k > 0$, let $I_k = 10\ldots 064$, where there are $k$ zeros between the $1$ and the $6$. Let $N(k)$ be the number of factors of $2$ in the prime factorization of $I_k$. What is the maximum value of $N(k)$?

$\mathrm{(A)}\ 6 \qquad \mathrm{(B)}\ 7 \qquad \mathrm{(C)}\ 8 \qquad \mathrm{(D)}\ 9 \qquad \mathrm{(E)}\ 10$

Solution