Difference between revisions of "1988 AJHSME Problems"

Line 128: Line 128:
  
 
== Problem 18 ==
 
== Problem 18 ==
 +
 +
The average weight of <math>6</math> boys is <math>150</math> pounds and the average weight of <math>4</math> girls is <math>120</math> pounds.  The average weight of the <math>10</math> children is
 +
 +
<math>\text{(A)}\ 135\text{ pounds} \qquad \text{(B)}\ 137\text{ pounds} \qquad \text{(C)}\ 138\text{ pounds} \qquad \text{(D)}\ 140\text{ pounds} \qquad \text{(E)}\ 141\text{ pounds}</math>
  
 
[[1988 AJHSME Problems/Problem 18|Solution]]
 
[[1988 AJHSME Problems/Problem 18|Solution]]
  
 
== Problem 19 ==
 
== Problem 19 ==
 +
 +
What is the <math>100\text{th}</math> number in the arithmetic sequence: <math>1,5,9,13,17,21,25,...</math>?
 +
 +
<math>\text{(A)}\ 397 \qquad \text{(B)}\ 399 \qquad \text{(C)}\ 401 \qquad \text{(D)}\ 403 \qquad \text{(E)}\ 405</math>
  
 
[[1988 AJHSME Problems/Problem 19|Solution]]
 
[[1988 AJHSME Problems/Problem 19|Solution]]
Line 140: Line 148:
  
 
== Problem 21 ==
 
== Problem 21 ==
 +
 +
A fifth number, <math>n</math>, is added to the set <math>\{ 3,6,9,10 \}</math> to make the mean of the set of five numbers equal to its median.  The number of possible values of <math>n</math> is
 +
 +
<math>\text{(A)}\ 1 \qquad \text{(B)}\ 2 \qquad \text{(C)}\ 3 \qquad \text{(D)}\ 4 \qquad \text{(E)}\ \text{more than }4</math>
  
 
[[1988 AJHSME Problems/Problem 21|Solution]]
 
[[1988 AJHSME Problems/Problem 21|Solution]]
  
 
== Problem 22 ==
 
== Problem 22 ==
 +
 +
Tom's Hat Shoppe increased all original prices by <math>25\% </math>.  Now the shoppe is having a sale where all prices are <math>20\% </math> off these increased prices.  Which statement best describes the sale price of an item?
 +
 +
<math>\text{(A)}\ \text{The sale price is }5\% \text{ higher than the original price.}</math>
 +
 +
<math>\text{(B)}\ \text{The sale price is higher than the original price, but by less than }5\% .</math>
 +
 +
<math>\text{(C)}\ \text{The sale price is higher than the original price, but by more than }5\% .</math>
 +
 +
<math>\text{(D)}\ \text{The sale price is lower than the original price.}</math>
 +
 +
<math>\text{(E)}\ \text{The same price is the same as the original price.}</math>
  
 
[[1988 AJHSME Problems/Problem 22|Solution]]
 
[[1988 AJHSME Problems/Problem 22|Solution]]
  
 
== Problem 23 ==
 
== Problem 23 ==
 +
 +
Maria buys computer disks at a price of <math>4</math> for <dollar/><math>5</math> and sells them at a price of <math>3</math> for <dollar/><math>5</math>.  How many computer disks must she sell in order to make a profit of <dollar/><math>100</math>?
 +
 +
<math>\text{(A)}\ 100 \qquad \text{(B)}\ 120 \qquad \text{(C)}\ 200 \qquad \text{(D)}\ 240 \qquad \text{(E)}\ 1200</math>
  
 
[[1988 AJHSME Problems/Problem 23|Solution]]
 
[[1988 AJHSME Problems/Problem 23|Solution]]
Line 156: Line 184:
  
 
== Problem 25 ==
 
== Problem 25 ==
 +
 +
A '''palindrome''' is a whole number that reads the same forwards and backwards.  If one neglects the colon, certain times displayed on a digital watch are palindromes.  Three examples are: <math>\boxed{1:01}</math>, <math>\boxed{4:44}</math>, and <math>\boxed{12:21}</math>.  How many times during a <math>12</math>-hour period will be palindromes?
 +
 +
<math>\text{(A)}\ 57 \qquad \text{(B)}\ 60 \qquad \text{(C)}\ 63 \qquad \text{(D)}\ 90 \qquad \text{(E)}\ 93</math>
  
 
[[1988 AJHSME Problems/Problem 25|Solution]]
 
[[1988 AJHSME Problems/Problem 25|Solution]]

Revision as of 15:45, 22 March 2009

Problem 1

The diagram shows part of a scale of a measuring device. The arrow indicates an approximate reading of

[asy] draw((-3,0)..(0,3)..(3,0)); draw((-3.5,0)--(-2.5,0)); draw((0,2.5)--(0,3.5)); draw((2.5,0)--(3.5,0)); draw((1.8,1.8)--(2.5,2.5)); draw((-1.8,1.8)--(-2.5,2.5)); draw((0,0)--3*dir(120),EndArrow); label("$10$",(-2.6,0),E); label("$11$",(2.6,0),W); [/asy]

$\text{(A)}\ 10.05 \qquad \text{(B)}\ 10.15 \qquad \text{(C)}\ 10.25 \qquad \text{(D)}\ 10.3 \qquad \text{(E)}\ 10.6$

Solution

Problem 2

The product $8\times .25\times 2\times .125 =$

$\text{(A)}\ \frac18 \qquad \text{(B)}\ \frac14 \qquad \text{(C)}\ \frac12 \qquad \text{(D)}\ 1 \qquad \text{(E)}\ 2$

Solution

Problem 3

$\frac{1}{10}+\frac{2}{20}+\frac{3}{30} =$

$\text{(A)}\ .1 \qquad \text{(B)}\ .123 \qquad \text{(C)}\ .2 \qquad \text{(D)}\ .3 \qquad \text{(E)}\ .6$

Solution

Problem 4

Solution

Problem 5

Solution

Problem 6

$\frac{(.2)^3}{(.02)^2} =$

$\text{(A)}\ .2 \qquad \text{(B)}\ 2 \qquad \text{(C)}\ 10 \qquad \text{(D)}\ 15 \qquad \text{(E)}\ 20$

Solution

Problem 7

$2.46\times 8.163\times (5.17+4.829)$ is closest to

$\text{(A)}\ 100 \qquad \text{(B)}\ 200 \qquad \text{(C)}\ 300 \qquad \text{(D)}\ 400 \qquad \text{(E)}\ 500$

Solution

Problem 8

Betty used a calculator to find the product $0.075 \times 2.56$. She forgot to enter the decimal points. The calculator showed $19200$. If Betty had entered the decimal points correctly, the answer would have been

$\text{(A)}\ .0192 \qquad \text{(B)}\ .192 \qquad \text{(C)}\ 1.92 \qquad \text{(D)}\ 19.2 \qquad \text{(E)}\ 192$

Solution

Problem 9

Solution

Problem 10

Chris' birthday is on a Thursday this year. What day of the week will it be $60$ days after her birthday?

$\text{(A)}\ \text{Monday} \qquad \text{(B)}\ \text{Wednesday} \qquad \text{(C)}\ \text{Thursday} \qquad \text{(D)}\ \text{Friday} \qquad \text{(E)}\ \text{Saturday}$

Solution

Problem 11

$\sqrt{164}$ is

$\text{(A)}\ 42 \qquad \text{(B)}\ \text{less than }10 \qquad \text{(C)}\ \text{between }10\text{ and }11 \qquad \text{(D)}\ \text{between }11\text{ and }12 \qquad \text{(E)}\ \text{between }12\text{ and }13$

Solution

Problem 12

Suppose the estimated $20$ billion dollar cost to send a person to the planet Mars is shared equally by the $250$ million people in the U.S. Then each person's share is

$\text{(A)}\ 40\text{ dollars} \qquad \text{(B)}\ 50\text{ dollars} \qquad \text{(C)}\ 80\text{ dollars} \qquad \text{(D)}\ 100\text{ dollars} \qquad \text{(E)}\ 125\text{ dollars}$

Solution

Problem 13

If rose bushes are spaced about $1$ foot apart, approximately how many bushes are needed to surround a circular patio whose radius is $12$ feet?

$\text{(A)}\ 12 \qquad \text{(B)}\ 38 \qquad \text{(C)}\ 48 \qquad \text{(D)}\ 75 \qquad \text{(E)}\ 450$

Solution

Problem 14

$\diamondsuit$ and $\Delta$ are whole numbers and $\diamondsuit \times \Delta =36$. The largest possible value of $\diamondsuit + \Delta$ is

$\text{(A)}\ 12 \qquad \text{(B)}\ 13 \qquad \text{(C)}\ 15 \qquad \text{(D)}\ 20\ \qquad \text{(E)}\ 37$

Solution

Problem 15

The reciprocal of $\left( \frac{1}{2}+\frac{1}{3}\right)$ is

$\text{(A)}\ \frac{1}{6} \qquad \text{(B)}\ \frac{2}{5} \qquad \text{(C)}\ \frac{6}{5} \qquad \text{(D)}\ \frac{5}{2} \qquad \text{(E)}\ 5$

Solution

Problem 16

Solution

Problem 17

Solution

Problem 18

The average weight of $6$ boys is $150$ pounds and the average weight of $4$ girls is $120$ pounds. The average weight of the $10$ children is

$\text{(A)}\ 135\text{ pounds} \qquad \text{(B)}\ 137\text{ pounds} \qquad \text{(C)}\ 138\text{ pounds} \qquad \text{(D)}\ 140\text{ pounds} \qquad \text{(E)}\ 141\text{ pounds}$

Solution

Problem 19

What is the $100\text{th}$ number in the arithmetic sequence: $1,5,9,13,17,21,25,...$?

$\text{(A)}\ 397 \qquad \text{(B)}\ 399 \qquad \text{(C)}\ 401 \qquad \text{(D)}\ 403 \qquad \text{(E)}\ 405$

Solution

Problem 20

Solution

Problem 21

A fifth number, $n$, is added to the set $\{ 3,6,9,10 \}$ to make the mean of the set of five numbers equal to its median. The number of possible values of $n$ is

$\text{(A)}\ 1 \qquad \text{(B)}\ 2 \qquad \text{(C)}\ 3 \qquad \text{(D)}\ 4 \qquad \text{(E)}\ \text{more than }4$

Solution

Problem 22

Tom's Hat Shoppe increased all original prices by $25\%$. Now the shoppe is having a sale where all prices are $20\%$ off these increased prices. Which statement best describes the sale price of an item?

$\text{(A)}\ \text{The sale price is }5\% \text{ higher than the original price.}$

$\text{(B)}\ \text{The sale price is higher than the original price, but by less than }5\% .$

$\text{(C)}\ \text{The sale price is higher than the original price, but by more than }5\% .$

$\text{(D)}\ \text{The sale price is lower than the original price.}$

$\text{(E)}\ \text{The same price is the same as the original price.}$

Solution

Problem 23

Maria buys computer disks at a price of $4$ for <dollar/>$5$ and sells them at a price of $3$ for <dollar/>$5$. How many computer disks must she sell in order to make a profit of <dollar/>$100$?

$\text{(A)}\ 100 \qquad \text{(B)}\ 120 \qquad \text{(C)}\ 200 \qquad \text{(D)}\ 240 \qquad \text{(E)}\ 1200$

Solution

Problem 24

Solution

Problem 25

A palindrome is a whole number that reads the same forwards and backwards. If one neglects the colon, certain times displayed on a digital watch are palindromes. Three examples are: $\boxed{1:01}$, $\boxed{4:44}$, and $\boxed{12:21}$. How many times during a $12$-hour period will be palindromes?

$\text{(A)}\ 57 \qquad \text{(B)}\ 60 \qquad \text{(C)}\ 63 \qquad \text{(D)}\ 90 \qquad \text{(E)}\ 93$

Solution

See also