Difference between revisions of "2006 AMC 12B Problems/Problem 23"
M1sterzer0 (talk | contribs) (→Problem) |
M1sterzer0 (talk | contribs) (→Solution) |
||
Line 35: | Line 35: | ||
== Solution == | == Solution == | ||
+ | <asy> | ||
+ | pathpen = linewidth(0.7); | ||
+ | pen f = fontsize(10); | ||
+ | size(5cm); | ||
+ | pair B = (0,sqrt(85+42*sqrt(2))); | ||
+ | pair A = (B.y,0); | ||
+ | pair C = (0,0); | ||
+ | pair P = IP(arc(B,7,180,360),arc(C,6,0,90)); | ||
+ | D(A--B--C--cycle); | ||
+ | D(P--A); | ||
+ | D(P--B); | ||
+ | D(P--C); | ||
+ | MP("A",D(A),plain.E,f); | ||
+ | MP("B",D(B),plain.N,f); | ||
+ | MP("C",D(C),plain.SW,f); | ||
+ | MP("P",D(P),plain.NE,f); | ||
+ | MP("\alpha",C,5*dir(80),f); | ||
+ | MP("90^\circ-\alpha",C,3*dir(30),f); | ||
+ | MP("s",(A+C)/2,plain.S,f); | ||
+ | MP("s",(B+C)/2,plain.W,f); | ||
+ | </asy> | ||
+ | Using the Law of Cosines on <math>\triangle PBC</math>, we have: | ||
+ | |||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | PB^2&=BC^2+PC^2-2\cdot BC\cdot PC\cdot \cos(\alpha) \Rightarrow 49 = 36 + s^2 - 12s\cos(\alpha) \Rightarrow \cos(\alpha) = \dfrac{s^2-13}{12s}. | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | Using the Law of Cosines on <math>\triangle PAC</math>, we have: | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | PA^2&=AC^2+PC^2-2\cdot AC\cdot PC\cdot \cos(90^\circ-\alpha) \Rightarrow 121 = 36 + s^2 - 12s\sin(\alpha) \Rightarrow \sin(\alpha) = \dfrac{s^2-85}{12s}. | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | Now we use <math>\sin^2(\alpha) + \cos^2(\alpha) = 1</math>. | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | \sin^2(\alpha)+\cos^2(\alpha) = 1 &\Rightarrow \frac{s^4-20s^2+169}{144s^2} + \frac{s^4-170s^2+7225}{144s^2} = 1 \ | ||
+ | &\Rightarrow 2s^4-340s^2+7394 = 0 \ | ||
+ | &\Rightarrow s^4-170s^2+3697 = 0 \ | ||
+ | &\Rightarrow s^2 = \dfrac{170 \pm \sqrt{170^2 - 4\cdot3697}}{2}\ | ||
+ | &\Rightarrow s^2 = \dfrac{170 \pm \sqrt{28900 - 14788}}{2}\ | ||
+ | &\Rightarrow s^2 = \dfrac{170 \pm \sqrt{14112}}{2}\ | ||
+ | &\Rightarrow s^2 = \dfrac{170 \pm \sqrt{2^5\cdot3^2\cdot7^2}}{2}\ | ||
+ | &\Rightarrow s^2 = \dfrac{170 \pm 84\sqrt{2}}{2} = 85 \pm 42\sqrt2 | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | Note that we know that we want the solution with <math>s^2 > 85</math> since we know that <math>\sin(\alpha) > 0</math>. Thus, <math>a+b=85+42=\boxed{127}</math>. | ||
== See also == | == See also == | ||
{{AMC12 box|year=2006|ab=B|num-b=22|num-a=24}} | {{AMC12 box|year=2006|ab=B|num-b=22|num-a=24}} |
Revision as of 21:00, 16 April 2009
This is an empty template page which needs to be filled. You can help us out by finding the needed content and editing it in. Thanks.
Problem
Isosceles has a right angle at . Point is inside , such that , , and . Legs and have length $s=\sqrt{a+b\sqrt{2}{$ (Error compiling LaTeX. Unknown error_msg), where and are positive integers. What is ?
Solution
Using the Law of Cosines on , we have:
Using the Law of Cosines on , we have:
Now we use .
Note that we know that we want the solution with since we know that . Thus, .
See also
2006 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 22 |
Followed by Problem 24 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |