Difference between revisions of "1991 AJHSME Problems"

(Created page with '==Problem 1== Solution == Problem 2 == Solution == Problem 3 == [[1991 AJHSME Problems/Problem 3|Soluti…')
 
Line 1: Line 1:
 
==Problem 1==
 
==Problem 1==
 +
 +
<math>1,000,000,000,000-777,777,777,777=</math>
 +
 +
<math>\text{(A)}\ 222,222,222,222 \qquad \text{(B)}\ 222,222,222,223 \qquad \text{(C)}\ 233,333,333,333 \qquad \text{(D)}\ 322,222,222,223 \qquad \text{(E)}\ 333,333,333,333</math>
  
 
[[1991 AJHSME Problems/Problem 1|Solution]]
 
[[1991 AJHSME Problems/Problem 1|Solution]]
  
 
== Problem 2 ==
 
== Problem 2 ==
 +
 +
<math>\frac{16+8}{4-2}=</math>
 +
 +
<math>\text{(A)}\ 4 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 16 \qquad \text{(E)}\ 20</math>
  
 
[[1991 AJHSME Problems/Problem 2|Solution]]
 
[[1991 AJHSME Problems/Problem 2|Solution]]
  
 
== Problem 3 ==
 
== Problem 3 ==
 +
 +
Two hundred thousand times two hundred thousand equals
 +
 +
<math>\text{(A)}\ \text{four hundred thousand} \qquad \text{(B)}\ \text{four million} \qquad \text{(C)}\ \text{forty thousand} \qquad \text{(D)}\ \text{four hundred million} \qquad \text{(E)}\ \text{forty billion}</math>
  
 
[[1991 AJHSME Problems/Problem 3|Solution]]
 
[[1991 AJHSME Problems/Problem 3|Solution]]
  
 
== Problem 4 ==
 
== Problem 4 ==
 +
 +
If <math>991+993+995+997+999=5000-N</math>, then <math>N=</math>
 +
 +
<math>\text{(A)}\ 5 \qquad \text{(B)}\ 10 \qquad \text{(C)}\ 15 \qquad \text{(D)}\ 20 \qquad \text{(E)}\ 25</math>
  
 
[[1991 AJHSME Problems/Problem 4|Solution]]
 
[[1991 AJHSME Problems/Problem 4|Solution]]
  
 
== Problem 5 ==
 
== Problem 5 ==
 +
 +
A "domino" is made up of two small squares:
 +
<asy>
 +
unitsize(12);
 +
fill((0,0)--(1,0)--(1,1)--(0,1)--cycle,black);
 +
draw((1,1)--(2,1)--(2,0)--(1,0));
 +
</asy>
 +
Which of the "checkerboards" illustrated below CANNOT be covered exactly and completely by a whole number of non-overlapping dominoes?
 +
 +
<asy>
 +
unitsize(12);
 +
fill((0,0)--(1,0)--(1,1)--(0,1)--cycle,black); fill((1,1)--(1,2)--(2,2)--(2,1)--cycle,black);
 +
fill((2,0)--(3,0)--(3,1)--(2,1)--cycle,black); fill((3,1)--(4,1)--(4,2)--(3,2)--cycle,black);
 +
fill((0,2)--(1,2)--(1,3)--(0,3)--cycle,black); fill((2,2)--(2,3)--(3,3)--(3,2)--cycle,black);
 +
draw((0,0)--(0,3)--(4,3)--(4,0)--cycle); draw((6,0)--(11,0)--(11,3)--(6,3)--cycle);
 +
fill((6,0)--(7,0)--(7,1)--(6,1)--cycle,black); fill((8,0)--(9,0)--(9,1)--(8,1)--cycle,black);
 +
fill((10,0)--(11,0)--(11,1)--(10,1)--cycle,black); fill((7,1)--(7,2)--(8,2)--(8,1)--cycle,black);
 +
fill((9,1)--(9,2)--(10,2)--(10,1)--cycle,black); fill((6,2)--(6,3)--(7,3)--(7,2)--cycle,black);
 +
fill((8,2)--(8,3)--(9,3)--(9,2)--cycle,black); fill((10,2)--(10,3)--(11,3)--(11,2)--cycle,black);
 +
draw((13,-1)--(13,3)--(17,3)--(17,-1)--cycle); fill((13,3)--(14,3)--(14,2)--(13,2)--cycle,black);
 +
fill((15,3)--(16,3)--(16,2)--(15,2)--cycle,black); fill((14,2)--(15,2)--(15,1)--(14,1)--cycle,black);
 +
fill((16,2)--(17,2)--(17,1)--(16,1)--cycle,black); fill((13,1)--(14,1)--(14,0)--(13,0)--cycle,black);
 +
fill((15,1)--(16,1)--(16,0)--(15,0)--cycle,black); fill((14,0)--(15,0)--(15,-1)--(14,-1)--cycle,black);
 +
fill((16,0)--(17,0)--(17,-1)--(16,-1)--cycle,black); draw((19,3)--(24,3)--(24,-1)--(19,-1)--cycle,black);
 +
fill((19,3)--(20,3)--(20,2)--(19,2)--cycle,black); fill((21,3)--(22,3)--(22,2)--(21,2)--cycle,black);
 +
fill((23,3)--(24,3)--(24,2)--(23,2)--cycle,black); fill((20,2)--(21,2)--(21,1)--(20,1)--cycle,black);
 +
fill((22,2)--(23,2)--(23,1)--(22,1)--cycle,black); fill((19,1)--(20,1)--(20,0)--(19,0)--cycle,black);
 +
fill((21,1)--(22,1)--(22,0)--(21,0)--cycle,black); fill((23,1)--(24,1)--(24,0)--(23,0)--cycle,black);
 +
fill((20,0)--(21,0)--(21,-1)--(20,-1)--cycle,black); fill((22,0)--(23,0)--(23,-1)--(22,-1)--cycle,black);
 +
draw((26,3)--(29,3)--(29,-3)--(26,-3)--cycle); fill((26,3)--(27,3)--(27,2)--(26,2)--cycle,black);
 +
fill((28,3)--(29,3)--(29,2)--(28,2)--cycle,black); fill((27,2)--(28,2)--(28,1)--(27,1)--cycle,black);
 +
fill((26,1)--(27,1)--(27,0)--(26,0)--cycle,black); fill((28,1)--(29,1)--(29,0)--(28,0)--cycle,black);
 +
fill((27,0)--(28,0)--(28,-1)--(27,-1)--cycle,black); fill((26,-1)--(27,-1)--(27,-2)--(26,-2)--cycle,black);
 +
fill((28,-1)--(29,-1)--(29,-2)--(28,-2)--cycle,black); fill((27,-2)--(28,-2)--(28,-3)--(27,-3)--cycle,black);
 +
</asy>
 +
 +
<math>\text{(A)}\ 3\times 4 \qquad \text{(B)}\ 3\times 5 \qquad \text{(C)}\ 4\times 4 \qquad \text{(D)}\ 4\times 5 \qquad \text{(E)}\ 6\times 3</math>
  
 
[[1991 AJHSME Problems/Problem 5|Solution]]
 
[[1991 AJHSME Problems/Problem 5|Solution]]
  
 
== Problem 6 ==
 
== Problem 6 ==
 +
 +
Which number in the array below is both the largest in its column and the smallest in its row?  (Columns go up and down, rows go right and left.)
 +
<cmath>\begin{tabular}[t]{ccccc}
 +
10 & 6 & 4 & 3 & 2 \
 +
11 & 7 & 14 & 10 & 8 \
 +
8 & 3 & 4 & 5 & 9 \
 +
13 & 4 & 15 & 12 & 1 \
 +
8 & 2 & 5 & 9 & 3
 +
\end{tabular}</cmath>
 +
 +
<math>\text{(A)}\ 1 \qquad \text{(B)}\ 6 \qquad \text{(C)}\ 7 \qquad \text{(D)}\ 12 \qquad \text{(E)}\ 15</math>
  
 
[[1991 AJHSME Problems/Problem 6|Solution]]
 
[[1991 AJHSME Problems/Problem 6|Solution]]
  
 
== Problem 7 ==
 
== Problem 7 ==
 +
 +
The value of <math>\frac{(487,000)(12,027,300)+(9,621,001)(487,000)}{(19,367)(.05)}</math> is closest to
 +
 +
<math>\text{(A)}\ 10,000,000 \qquad \text{(B)}\ 100,000,000 \qquad \text{(C)}\ 1,000,000,000 \qquad \text{(D)}\ 10,000,000,000 \qquad \text{(E)}\ 100,000,000,000</math>
  
 
[[1991 AJHSME Problems/Problem 7|Solution]]
 
[[1991 AJHSME Problems/Problem 7|Solution]]
  
 
== Problem 8 ==
 
== Problem 8 ==
 +
 +
What is the largest quotient that can be formed using two numbers chosen from the set <math>\{ -24, -3, -2, 1, 2, 8 \}</math>?
 +
 +
<math>\text{(A)}\ -24 \qquad \text{(B)}\ -3 \qquad \text{(C)}\ 8 \qquad \text{(D)}\ 12 \qquad \text{(E)}\ 24</math>
  
 
[[1991 AJHSME Problems/Problem 8|Solution]]
 
[[1991 AJHSME Problems/Problem 8|Solution]]
  
 
== Problem 9 ==
 
== Problem 9 ==
 +
 +
How many whole numbers from <math>1</math> through <math>46</math> are divisible by either <math>3</math> or <math>5</math> or both?
 +
 +
<math>\text{(A)}\ 18 \qquad \text{(B)}\ 21 \qquad \text{(C)}\ 24 \qquad \text{(D)}\ 25 \qquad \text{(E)}\ 27</math>
  
 
[[1991 AJHSME Problems/Problem 9|Solution]]
 
[[1991 AJHSME Problems/Problem 9|Solution]]
  
 
== Problem 10 ==
 
== Problem 10 ==
 +
 +
The area in square units of the region enclosed by parallelogram <math>ABCD</math> is
 +
 +
<asy>
 +
unitsize(24);
 +
pair A,B,C,D;
 +
A=(-1,0); B=(0,2); C=(4,2); D=(3,0);
 +
draw(A--B--C--D); draw((0,-1)--(0,3)); draw((-2,0)--(6,0));
 +
draw((-.25,2.75)--(0,3)--(.25,2.75)); draw((5.75,.25)--(6,0)--(5.75,-.25));
 +
dot(origin); dot(A); dot(B); dot(C); dot(D); label("$y$",(0,3),N); label("$x$",(6,0),E);
 +
label("$(0,0)$",origin,SE); label("$D (3,0)$",D,SE); label("$C (4,2)$",C,NE);
 +
label("$A$",A,SW); label("$B$",B,NW);
 +
</asy>
 +
 +
<math>\text{(A)}\ 6 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 15 \qquad \text{(E)}\ 18</math>
  
 
[[1991 AJHSME Problems/Problem 10|Solution]]
 
[[1991 AJHSME Problems/Problem 10|Solution]]

Revision as of 16:18, 15 July 2009

Problem 1

$1,000,000,000,000-777,777,777,777=$

$\text{(A)}\ 222,222,222,222 \qquad \text{(B)}\ 222,222,222,223 \qquad \text{(C)}\ 233,333,333,333 \qquad \text{(D)}\ 322,222,222,223 \qquad \text{(E)}\ 333,333,333,333$

Solution

Problem 2

$\frac{16+8}{4-2}=$

$\text{(A)}\ 4 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 16 \qquad \text{(E)}\ 20$

Solution

Problem 3

Two hundred thousand times two hundred thousand equals

$\text{(A)}\ \text{four hundred thousand} \qquad \text{(B)}\ \text{four million} \qquad \text{(C)}\ \text{forty thousand} \qquad \text{(D)}\ \text{four hundred million} \qquad \text{(E)}\ \text{forty billion}$

Solution

Problem 4

If $991+993+995+997+999=5000-N$, then $N=$

$\text{(A)}\ 5 \qquad \text{(B)}\ 10 \qquad \text{(C)}\ 15 \qquad \text{(D)}\ 20 \qquad \text{(E)}\ 25$

Solution

Problem 5

A "domino" is made up of two small squares: [asy] unitsize(12); fill((0,0)--(1,0)--(1,1)--(0,1)--cycle,black);  draw((1,1)--(2,1)--(2,0)--(1,0)); [/asy] Which of the "checkerboards" illustrated below CANNOT be covered exactly and completely by a whole number of non-overlapping dominoes?

[asy] unitsize(12); fill((0,0)--(1,0)--(1,1)--(0,1)--cycle,black); fill((1,1)--(1,2)--(2,2)--(2,1)--cycle,black); fill((2,0)--(3,0)--(3,1)--(2,1)--cycle,black); fill((3,1)--(4,1)--(4,2)--(3,2)--cycle,black); fill((0,2)--(1,2)--(1,3)--(0,3)--cycle,black); fill((2,2)--(2,3)--(3,3)--(3,2)--cycle,black); draw((0,0)--(0,3)--(4,3)--(4,0)--cycle); draw((6,0)--(11,0)--(11,3)--(6,3)--cycle); fill((6,0)--(7,0)--(7,1)--(6,1)--cycle,black); fill((8,0)--(9,0)--(9,1)--(8,1)--cycle,black); fill((10,0)--(11,0)--(11,1)--(10,1)--cycle,black); fill((7,1)--(7,2)--(8,2)--(8,1)--cycle,black); fill((9,1)--(9,2)--(10,2)--(10,1)--cycle,black); fill((6,2)--(6,3)--(7,3)--(7,2)--cycle,black); fill((8,2)--(8,3)--(9,3)--(9,2)--cycle,black); fill((10,2)--(10,3)--(11,3)--(11,2)--cycle,black); draw((13,-1)--(13,3)--(17,3)--(17,-1)--cycle); fill((13,3)--(14,3)--(14,2)--(13,2)--cycle,black); fill((15,3)--(16,3)--(16,2)--(15,2)--cycle,black); fill((14,2)--(15,2)--(15,1)--(14,1)--cycle,black); fill((16,2)--(17,2)--(17,1)--(16,1)--cycle,black); fill((13,1)--(14,1)--(14,0)--(13,0)--cycle,black); fill((15,1)--(16,1)--(16,0)--(15,0)--cycle,black); fill((14,0)--(15,0)--(15,-1)--(14,-1)--cycle,black); fill((16,0)--(17,0)--(17,-1)--(16,-1)--cycle,black); draw((19,3)--(24,3)--(24,-1)--(19,-1)--cycle,black); fill((19,3)--(20,3)--(20,2)--(19,2)--cycle,black); fill((21,3)--(22,3)--(22,2)--(21,2)--cycle,black); fill((23,3)--(24,3)--(24,2)--(23,2)--cycle,black); fill((20,2)--(21,2)--(21,1)--(20,1)--cycle,black); fill((22,2)--(23,2)--(23,1)--(22,1)--cycle,black); fill((19,1)--(20,1)--(20,0)--(19,0)--cycle,black); fill((21,1)--(22,1)--(22,0)--(21,0)--cycle,black); fill((23,1)--(24,1)--(24,0)--(23,0)--cycle,black); fill((20,0)--(21,0)--(21,-1)--(20,-1)--cycle,black); fill((22,0)--(23,0)--(23,-1)--(22,-1)--cycle,black); draw((26,3)--(29,3)--(29,-3)--(26,-3)--cycle); fill((26,3)--(27,3)--(27,2)--(26,2)--cycle,black); fill((28,3)--(29,3)--(29,2)--(28,2)--cycle,black); fill((27,2)--(28,2)--(28,1)--(27,1)--cycle,black); fill((26,1)--(27,1)--(27,0)--(26,0)--cycle,black); fill((28,1)--(29,1)--(29,0)--(28,0)--cycle,black); fill((27,0)--(28,0)--(28,-1)--(27,-1)--cycle,black); fill((26,-1)--(27,-1)--(27,-2)--(26,-2)--cycle,black); fill((28,-1)--(29,-1)--(29,-2)--(28,-2)--cycle,black); fill((27,-2)--(28,-2)--(28,-3)--(27,-3)--cycle,black); [/asy]

$\text{(A)}\ 3\times 4 \qquad \text{(B)}\ 3\times 5 \qquad \text{(C)}\ 4\times 4 \qquad \text{(D)}\ 4\times 5 \qquad \text{(E)}\ 6\times 3$

Solution

Problem 6

Which number in the array below is both the largest in its column and the smallest in its row? (Columns go up and down, rows go right and left.) \[\begin{tabular}[t]{ccccc} 10 & 6 & 4 & 3 & 2 \\ 11 & 7 & 14 & 10 & 8 \\ 8 & 3 & 4 & 5 & 9 \\ 13 & 4 & 15 & 12 & 1 \\ 8 & 2 & 5 & 9 & 3 \end{tabular}\]

$\text{(A)}\ 1 \qquad \text{(B)}\ 6 \qquad \text{(C)}\ 7 \qquad \text{(D)}\ 12 \qquad \text{(E)}\ 15$

Solution

Problem 7

The value of $\frac{(487,000)(12,027,300)+(9,621,001)(487,000)}{(19,367)(.05)}$ is closest to

$\text{(A)}\ 10,000,000 \qquad \text{(B)}\ 100,000,000 \qquad \text{(C)}\ 1,000,000,000 \qquad \text{(D)}\ 10,000,000,000 \qquad \text{(E)}\ 100,000,000,000$

Solution

Problem 8

What is the largest quotient that can be formed using two numbers chosen from the set $\{ -24, -3, -2, 1, 2, 8 \}$?

$\text{(A)}\ -24 \qquad \text{(B)}\ -3 \qquad \text{(C)}\ 8 \qquad \text{(D)}\ 12 \qquad \text{(E)}\ 24$

Solution

Problem 9

How many whole numbers from $1$ through $46$ are divisible by either $3$ or $5$ or both?

$\text{(A)}\ 18 \qquad \text{(B)}\ 21 \qquad \text{(C)}\ 24 \qquad \text{(D)}\ 25 \qquad \text{(E)}\ 27$

Solution

Problem 10

The area in square units of the region enclosed by parallelogram $ABCD$ is

[asy] unitsize(24); pair A,B,C,D; A=(-1,0); B=(0,2); C=(4,2); D=(3,0);  draw(A--B--C--D); draw((0,-1)--(0,3)); draw((-2,0)--(6,0)); draw((-.25,2.75)--(0,3)--(.25,2.75)); draw((5.75,.25)--(6,0)--(5.75,-.25)); dot(origin); dot(A); dot(B); dot(C); dot(D); label("$y$",(0,3),N); label("$x$",(6,0),E); label("$(0,0)$",origin,SE); label("$D (3,0)$",D,SE); label("$C (4,2)$",C,NE); label("$A$",A,SW); label("$B$",B,NW); [/asy]

$\text{(A)}\ 6 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 15 \qquad \text{(E)}\ 18$

Solution

Problem 11

Solution

Problem 12

Solution

Problem 13

Solution

Problem 14

Solution

Problem 15

Solution

Problem 16

Solution

Problem 17

Solution

Problem 18

Solution

Problem 19

Solution

Problem 20

Solution

Problem 21

Solution

Problem 22

Solution

Problem 23

Solution

Problem 24

Solution

Problem 25

Solution

See also

1991 AJHSME (ProblemsAnswer KeyResources)
Preceded by
1990 AJHSME
Followed by
1992 AJHSME
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions