Difference between revisions of "2010 AMC 12B Problems/Problem 12"
Line 7: | Line 7: | ||
== Solution == | == Solution == | ||
− | <cmath> \log_{\sqrt{2}}\sqrt{x} + \log_2x + \log_4(x^2) + \log_8(x^3) + \log_{16}(x^4) = 40 </cmath> | + | <cmath> \log_{\sqrt{2}}\sqrt{x} + \log_2x + \log_4(x^2) + \log_8(x^3) + \log_{16}(x^4) = 40 </cmath>\\ |
− | |||
<cmath> \frac{1}{2} \frac{\log_2x}{\log_2\sqrt{2}} + \log_2x + \frac{2\log_2x}{\log_24} + \frac{3\log_2x}{\log_28} + \frac{4\log_2x}{\log_216} = 40 </cmath> | <cmath> \frac{1}{2} \frac{\log_2x}{\log_2\sqrt{2}} + \log_2x + \frac{2\log_2x}{\log_24} + \frac{3\log_2x}{\log_28} + \frac{4\log_2x}{\log_216} = 40 </cmath> | ||
<cmath> \log_2x + \log_2x + \log_2x + \log_2x + \log_2x = 40 </cmath> | <cmath> \log_2x + \log_2x + \log_2x + \log_2x + \log_2x = 40 </cmath> |