Difference between revisions of "1998 AJHSME Problems"

(Created page with '==Problem 1== Solution == Problem 2 == Solution ==Problem 3== [[1998 AJHSME Problems/Problem 3|Solution…')
 
Line 1: Line 1:
 
==Problem 1==
 
==Problem 1==
 +
 +
For <math>x=7</math>, which of the following is the smallest?
 +
 +
<math>\text{(A)}\ \dfrac{6}{x} \qquad \text{(B)}\ \dfrac{6}{x+1} \qquad \text{(C)}\ \dfrac{6}{x-1} \qquad \text{(D)}\ \dfrac{x}{6} \qquad \text{(E)}\ \dfrac{x+1}{6}</math>
  
 
[[1998 AJHSME Problems/Problem 1|Solution]]
 
[[1998 AJHSME Problems/Problem 1|Solution]]
  
 
== Problem 2 ==
 
== Problem 2 ==
 +
 +
If <math>Unknown environment 'tabular' = \text{a}\cdot \text{d} - \text{b}\cdot \text{c}</math>, what is the value of <math>Unknown environment 'tabular'</math>?
 +
 +
<math>\text{(A)}\ -2 \qquad \text{(B)}\ -1 \qquad \text{(C)}\ 0 \qquad \text{(D)}\ 1 \qquad \text{(E)}\ 2</math>
  
 
[[1998 AJHSME Problems/Problem 2|Solution]]
 
[[1998 AJHSME Problems/Problem 2|Solution]]
  
 
==Problem 3==
 
==Problem 3==
 +
 +
<math>\dfrac{\dfrac{3}{8} + \dfrac{7}{8}}{\dfrac{4}{5}} = </math>
 +
 +
<math>\text{(A)}\ 1 \qquad \text{(B)} \dfrac{25}{16} \qquad \text{(C)}\ 2 \qquad \text{(D)}\ \dfrac{43}{20} \qquad \text{(E)}\ \dfrac{47}{16}</math>
  
 
[[1998 AJHSME Problems/Problem 3|Solution]]
 
[[1998 AJHSME Problems/Problem 3|Solution]]
  
 
==Problem 4==
 
==Problem 4==
 +
 +
How many triangles are in this figure? (Some triangles may overlap other triangles.)
 +
 +
{{image}}
 +
 +
<math>\text{(A)}\ 9 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 7 \qquad \text{(D)}\ 6 \qquad \text{(E)}\ 5</math>
  
 
[[1998 AJHSME Problems/Problem 4|Solution]]
 
[[1998 AJHSME Problems/Problem 4|Solution]]
  
 
==Problem 5==
 
==Problem 5==
 +
 +
Which of the following numbers is largest?
 +
 +
<math>\text{(A)}\ 9.12344 \qquad \text{(B)}\ 9.123\overline{4} \qquad \text{(C)}\ 9.12\overline{34} \qquad \text{(D)}\ 9.1\overline{234} \qquad \text{(E)}\ 9.\overline{1234}</math>
  
 
[[1998 AJHSME Problems/Problem 5|Solution]]
 
[[1998 AJHSME Problems/Problem 5|Solution]]
  
 
==Problem 6==
 
==Problem 6==
 +
 +
Dots are spaced one unit apart, horizontally and vertically.  The number of square units enclosed by the polygon is
 +
 +
{{image}}
 +
 +
<math>\text{(A)}\ 5 \qquad \text{(B)}\ 6 \qquad \text{(C)}\ 7 \qquad \text{(D)}\ 8 \qquad \text{(E)}\ 9</math>
  
 
[[1998 AJHSME Problems/Problem 6|Solution]]
 
[[1998 AJHSME Problems/Problem 6|Solution]]
  
 
==Problem 7==
 
==Problem 7==
 +
 +
<math>100\times 19.98\times 1.998\times 1000=</math>
 +
 +
<math>\text{(A)}\ (1.998)^2 \qquad \text{(B)}\ (19.98)^2 \qquad \text{(C)}\ (199.8)^2 \qquad \text{(D)}\ (1998)^2 \qquad \text{(E)}\ (19980)^2</math>
  
 
[[1998 AJHSME Problems/Problem 7|Solution]]
 
[[1998 AJHSME Problems/Problem 7|Solution]]
  
 
==Problem 8==
 
==Problem 8==
 +
 +
A child's wading pool contains 200 gallons of water.  If water evaporates at the rate of 0.5 gallons per day and no other water is added or removed, how many gallons of water will be in the pool after 30 days?
 +
 +
<math>\text{(A)}\ 140 \qquad \text{(B)}\ 170 \qquad \text{(C)}\ 185 \qquad \text{(D)}\ 198.5 \qquad \text{(E)}\ 199.85</math>
  
 
[[1998 AJHSME Problems/Problem 8|Solution]]
 
[[1998 AJHSME Problems/Problem 8|Solution]]
  
 
==Problem 9==
 
==Problem 9==
 +
 +
For a sale, a store owner reduces the price of a <dollar/>10 scarf by <math>20\% </math>.  Later the price is lowered again, this time by one-half the reduced price.  The price is now
 +
 +
<math>\text{(A)}\ 2.00\text{ dollars} \qquad \text{(B)}\ 3.75\text{ dollars} \qquad \text{(C)}\ 4.00\text{ dollars} \qquad \text{(D)}\ 4.90\text{ dollars} \qquad \text{(E)}\ 6.40\text{ dollars}</math>
  
 
[[1998 AJHSME Problems/Problem 9|Solution]]
 
[[1998 AJHSME Problems/Problem 9|Solution]]
  
 
==Problem 10==
 
==Problem 10==
 +
 +
Each of the letters <math>\text{W}</math>, <math>\text{X}</math>, <math>\text{Y}</math>, and <math>\text{Z}</math> represents a different integer in the set <math>\{ 1,2,3,4\}</math>, but not necessarily in that order.  If <math>\dfrac{\text{W}}{\text{X}} - \dfrac{\text{Y}}{\text{Z}}=1</math>, then the sum of <math>\text{W}</math> and <math>\text{Y}</math> is
 +
 +
<math>\text{(A)}\ 3 \qquad \text{(B)}\ 4 \qquad \text{(C)}\ 5 \qquad \text{(D)}\ 6 \qquad \text{(E)}\ 7</math>
  
 
[[1998 AJHSME Problems/Problem 10|Solution]]
 
[[1998 AJHSME Problems/Problem 10|Solution]]
  
 
==Problem 11==
 
==Problem 11==
 +
 +
Harry has 3 sisters and 5 brothers.  His sister Harriet has <math>\text{S}</math> sisters and <math>\text{B}</math> brothers.  What is the product of <math>\text{S}</math> and <math>\text{B}</math>?
 +
 +
<math>\text{(A)}\ 8 \qquad \text{(B)}\ 10 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 15 \qquad \text{(E)}\ 18</math>
  
 
[[1998 AJHSME Problems/Problem 11|Solution]]
 
[[1998 AJHSME Problems/Problem 11|Solution]]
  
 
==Problem 12==
 
==Problem 12==
 +
 +
<math>2\left(1-\dfrac{1}{2}\right) + 3\left(1-\dfrac{1}{3}\right) + 4\left(1-\dfrac{1}{4}\right) + \cdots + 10\left(1-\dfrac{1}{10}\right)=</math>
 +
 +
<math>\text{(A)}\ 45 \qquad \text{(B)}\ 49 \qquad \text{(C)}\ 50 \qquad \text{(D)}\ 54 \qquad \text{(E)}\ 55</math>
  
 
[[1998 AJHSME Problems/Problem 12|Solution]]
 
[[1998 AJHSME Problems/Problem 12|Solution]]
  
 
==Problem 13==
 
==Problem 13==
 +
 +
What is the ratio of the area of the shaded square to the area of the large square?  (The figure is drawn to scale)
 +
 +
{{image}}
 +
 +
<math>\text{(A)}\ \dfrac{1}{6} \qquad \text{(B)}\ \dfrac{1}{7} \qquad \text{(C)}\ \dfrac{1}{8} \qquad \text{(D)}\ \dfrac{1}{12} \qquad \text{(E)}\ \dfrac{1}{16}</math>
  
 
[[1998 AJHSME Problems/Problem 13|Solution]]
 
[[1998 AJHSME Problems/Problem 13|Solution]]

Revision as of 23:02, 15 December 2010

Problem 1

For $x=7$, which of the following is the smallest?

$\text{(A)}\ \dfrac{6}{x} \qquad \text{(B)}\ \dfrac{6}{x+1} \qquad \text{(C)}\ \dfrac{6}{x-1} \qquad \text{(D)}\ \dfrac{x}{6} \qquad \text{(E)}\ \dfrac{x+1}{6}$

Solution

Problem 2

If $\begin{tabular}{r|l}a&b \\ \hline c&d\end{tabular} = \text{a}\cdot \text{d} - \text{b}\cdot \text{c}$, what is the value of $\begin{tabular}{r|l}3&4 \\ \hline 1&2\end{tabular}$?

$\text{(A)}\ -2 \qquad \text{(B)}\ -1 \qquad \text{(C)}\ 0 \qquad \text{(D)}\ 1 \qquad \text{(E)}\ 2$

Solution

Problem 3

$\dfrac{\dfrac{3}{8} + \dfrac{7}{8}}{\dfrac{4}{5}} =$

$\text{(A)}\ 1 \qquad \text{(B)} \dfrac{25}{16} \qquad \text{(C)}\ 2 \qquad \text{(D)}\ \dfrac{43}{20} \qquad \text{(E)}\ \dfrac{47}{16}$

Solution

Problem 4

How many triangles are in this figure? (Some triangles may overlap other triangles.)


An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.


$\text{(A)}\ 9 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 7 \qquad \text{(D)}\ 6 \qquad \text{(E)}\ 5$

Solution

Problem 5

Which of the following numbers is largest?

$\text{(A)}\ 9.12344 \qquad \text{(B)}\ 9.123\overline{4} \qquad \text{(C)}\ 9.12\overline{34} \qquad \text{(D)}\ 9.1\overline{234} \qquad \text{(E)}\ 9.\overline{1234}$

Solution

Problem 6

Dots are spaced one unit apart, horizontally and vertically. The number of square units enclosed by the polygon is


An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.


$\text{(A)}\ 5 \qquad \text{(B)}\ 6 \qquad \text{(C)}\ 7 \qquad \text{(D)}\ 8 \qquad \text{(E)}\ 9$

Solution

Problem 7

$100\times 19.98\times 1.998\times 1000=$

$\text{(A)}\ (1.998)^2 \qquad \text{(B)}\ (19.98)^2 \qquad \text{(C)}\ (199.8)^2 \qquad \text{(D)}\ (1998)^2 \qquad \text{(E)}\ (19980)^2$

Solution

Problem 8

A child's wading pool contains 200 gallons of water. If water evaporates at the rate of 0.5 gallons per day and no other water is added or removed, how many gallons of water will be in the pool after 30 days?

$\text{(A)}\ 140 \qquad \text{(B)}\ 170 \qquad \text{(C)}\ 185 \qquad \text{(D)}\ 198.5 \qquad \text{(E)}\ 199.85$

Solution

Problem 9

For a sale, a store owner reduces the price of a <dollar/>10 scarf by $20\%$. Later the price is lowered again, this time by one-half the reduced price. The price is now

$\text{(A)}\ 2.00\text{ dollars} \qquad \text{(B)}\ 3.75\text{ dollars} \qquad \text{(C)}\ 4.00\text{ dollars} \qquad \text{(D)}\ 4.90\text{ dollars} \qquad \text{(E)}\ 6.40\text{ dollars}$

Solution

Problem 10

Each of the letters $\text{W}$, $\text{X}$, $\text{Y}$, and $\text{Z}$ represents a different integer in the set $\{ 1,2,3,4\}$, but not necessarily in that order. If $\dfrac{\text{W}}{\text{X}} - \dfrac{\text{Y}}{\text{Z}}=1$, then the sum of $\text{W}$ and $\text{Y}$ is

$\text{(A)}\ 3 \qquad \text{(B)}\ 4 \qquad \text{(C)}\ 5 \qquad \text{(D)}\ 6 \qquad \text{(E)}\ 7$

Solution

Problem 11

Harry has 3 sisters and 5 brothers. His sister Harriet has $\text{S}$ sisters and $\text{B}$ brothers. What is the product of $\text{S}$ and $\text{B}$?

$\text{(A)}\ 8 \qquad \text{(B)}\ 10 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 15 \qquad \text{(E)}\ 18$

Solution

Problem 12

$2\left(1-\dfrac{1}{2}\right) + 3\left(1-\dfrac{1}{3}\right) + 4\left(1-\dfrac{1}{4}\right) + \cdots + 10\left(1-\dfrac{1}{10}\right)=$

$\text{(A)}\ 45 \qquad \text{(B)}\ 49 \qquad \text{(C)}\ 50 \qquad \text{(D)}\ 54 \qquad \text{(E)}\ 55$

Solution

Problem 13

What is the ratio of the area of the shaded square to the area of the large square? (The figure is drawn to scale)


An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.


$\text{(A)}\ \dfrac{1}{6} \qquad \text{(B)}\ \dfrac{1}{7} \qquad \text{(C)}\ \dfrac{1}{8} \qquad \text{(D)}\ \dfrac{1}{12} \qquad \text{(E)}\ \dfrac{1}{16}$

Solution

Problem 14

Solution

Problem 15

Solution

Problem 16

Solution

Problem 17

Solution

Problem 18

Solution

Problem 19

Solution

Problem 20

Solution

Problem 21

Solution

Problem 22

Solution

Problem 23

Solution

Problem 24

Solution

Problem 25

Solution

See also

1998 AJHSME (ProblemsAnswer KeyResources)
Preceded by
1997 AJHSME
Followed by
1999 AMC 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions