Difference between revisions of "1972 USAMO Problems/Problem 2"

(Solution 1)
(Solution 2)
Line 4: Line 4:
 
==Solution==
 
==Solution==
  
===Solution 2===
+
===Solution 1===
  
 
Suppose <math>\triangle ABD</math> is fixed.
 
Suppose <math>\triangle ABD</math> is fixed.

Revision as of 01:40, 12 June 2011

Problem

A given tetrahedron $ABCD$ is isosceles, that is, $AB=CD, AC=BD, AD=BC$. Show that the faces of the tetrahedron are acute-angled triangles.

Solution

Solution 1

Suppose $\triangle ABD$ is fixed. By the equality conditions, it follows that the maximal possible value of $BC$ occurs when the four vertices are coplanar, with $C$ on the opposite side of $\overline{AD}$ as $B$. In this case, the tetrahedron is not actually a tetrahedron, so this maximum isn't actually attainable.

For the sake of contradiction, suppose $\angle ABD$ is non-acute. Then, $(AD)^2\geq (AB)^2+(BD)^2$. In our optimal case noted above, $ACDB$ is a parallelogram, so \begin{align*} 2(BD)^2 + 2(AB)^2 &= (AD)^2 + (CB)^2 \\ &= 2(AD)^2 \\ &\geq 2(BD)^2+2(AB)^2.  \end{align*} However, as stated, equality cannot be attained, so we get our desired contradiction.

See also

1972 USAMO (ProblemsResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5
All USAMO Problems and Solutions