Difference between revisions of "1950 AHSME Problems/Problem 16"

(Created page with "== Problem== The formula which expresses the relationship between <math>x</math> and <math>y</math> as shown in the accompanying table is: <cmath> \begin{tabular}[t]{|c|c|c|c|c...")
 
Line 1: Line 1:
 
== Problem==
 
== Problem==
  
The formula which expresses the relationship between <math>x</math> and <math>y</math> as shown in the accompanying table is:
+
The number of terms in the expansion of <math> [(a+3b)^{2}(a-3b)^{2}]^{2} </math> when simplified is:
  
<cmath> \begin{tabular}[t]{|c|c|c|c|c|c|}\hline x&0&1&2&3&4\\\hline y&100&90&70&40&0\\\hline\end{tabular} </cmath>
+
<math> \textbf{(A)}\ 4\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 6\qquad\textbf{(D)}\ 7\qquad\textbf{(E)}\ 8 </math>
  
<math> \textbf{(A)}\ y=100-10x\qquad\textbf{(B)}\ y=100-5x^{2}\qquad\textbf{(C)}\ y=100-5x-5x^{2}\qquad\\ \textbf{(D)}\ y=20-x-x^{2}\qquad\textbf{(E)}\ \text{None of these} </math>
+
==Solution==
  
==Solution==
+
Use properties of exponents to move the squares outside the brackets use difference of squares.
 +
 
 +
<cmath>[(a+3b)(a-3b)]^4 = (a^2-9b^2)^4</cmath>
  
Plug in the points <math>(0,100)</math> and <math>(4,0)</math> into each equation. The only one that works for both points is <math>\mathrm{(C)}.</math> Plug in the rest of the points to confirm the answer is indeed <math>\boxed{\mathrm{(C)}\ y=100-5x-5x^2.}</math>
+
Using the binomial theorem, we can see that the number of terms is <math>\boxed{\mathrm{(B)}\ 5.}</math>
  
 
==See Also==
 
==See Also==
  
 
{{AHSME box|year=1950|num-b=15|num-a=17}}
 
{{AHSME box|year=1950|num-b=15|num-a=17}}

Revision as of 21:18, 13 November 2011

Problem

The number of terms in the expansion of $[(a+3b)^{2}(a-3b)^{2}]^{2}$ when simplified is:

$\textbf{(A)}\ 4\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 6\qquad\textbf{(D)}\ 7\qquad\textbf{(E)}\ 8$

Solution

Use properties of exponents to move the squares outside the brackets use difference of squares.

\[[(a+3b)(a-3b)]^4 = (a^2-9b^2)^4\]

Using the binomial theorem, we can see that the number of terms is $\boxed{\mathrm{(B)}\ 5.}$

See Also

1950 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions