Difference between revisions of "2012 AMC 10A Problems/Problem 1"

(see also)
Line 8: Line 8:
  
 
Cagney can frost one in 20 seconds, and Lacey can frost one in 30 seconds. Working together, they can frost one in <math>\frac{20*30}{20+30} = \frac{600}{50} = 12</math> seconds. In 300 seconds (5 minutes), they can frost <math>\boxed{\textbf{(D)}\ 25 \text{ cupcakes }}</math>.
 
Cagney can frost one in 20 seconds, and Lacey can frost one in 30 seconds. Working together, they can frost one in <math>\frac{20*30}{20+30} = \frac{600}{50} = 12</math> seconds. In 300 seconds (5 minutes), they can frost <math>\boxed{\textbf{(D)}\ 25 \text{ cupcakes }}</math>.
 +
 +
== See Also ==
 +
 +
{{AMC10 box|year=2012|ab=A|before=First Problem|num-a=2}}

Revision as of 22:40, 8 February 2012

Problem 1

Cagney can frost a cupcake every 20 seconds and Lacey can frost a cupcake every 30 seconds. Working together, how many cupcakes can they frost in 5 minutes?

$\textbf{(A)}\ 10\qquad\textbf{(B)}\ 15\qquad\textbf{(C)}\ 20\qquad\textbf{(D)}\ 25\qquad\textbf{(E)}\ 30$

Solution

Cagney can frost one in 20 seconds, and Lacey can frost one in 30 seconds. Working together, they can frost one in $\frac{20*30}{20+30} = \frac{600}{50} = 12$ seconds. In 300 seconds (5 minutes), they can frost $\boxed{\textbf{(D)}\ 25 \text{ cupcakes }}$.

See Also

2012 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions