Difference between revisions of "2012 AIME II Problems/Problem 8"

(Created page with "== Problem 8 == The complex numbers <math>z</math> and <math>w</math> satisfy the system <cmath> z + \frac{20i}w = 5+i \ \ w+\frac{12i}z = -4+10i </cmath> Find the smallest pos...")
 
Line 2: Line 2:
 
The complex numbers <math>z</math> and <math>w</math> satisfy the system <cmath> z + \frac{20i}w = 5+i \ \
 
The complex numbers <math>z</math> and <math>w</math> satisfy the system <cmath> z + \frac{20i}w = 5+i \ \
 
w+\frac{12i}z = -4+10i </cmath> Find the smallest possible value of <math>\vert zw\vert^2</math>.
 
w+\frac{12i}z = -4+10i </cmath> Find the smallest possible value of <math>\vert zw\vert^2</math>.
 +
 +
 +
== Solution ==
 +
 +
== See also ==
 +
{{AIME box|year=2012|n=II|num-b=7|num-a=9}}

Revision as of 16:21, 31 March 2012

Problem 8

The complex numbers $z$ and $w$ satisfy the system \[z + \frac{20i}w = 5+i \\ \\ w+\frac{12i}z = -4+10i\] Find the smallest possible value of $\vert zw\vert^2$.


Solution

See also

2012 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions