Difference between revisions of "2003 AMC 12A Problems/Problem 22"

(Created page with '== Problem == Objects <math>A</math> and <math>B</math> move simultaneously in the coordinate plane via a sequence of steps, each of length one. Object <math>A</math> starts at …')
 
Line 18: Line 18:
  
 
{{AMC12 box|year=2003|ab=A|num-b=21|num-a=23}}
 
{{AMC12 box|year=2003|ab=A|num-b=21|num-a=23}}
 +
{{MAA Notice}}

Revision as of 09:18, 4 July 2013

Problem

Objects $A$ and $B$ move simultaneously in the coordinate plane via a sequence of steps, each of length one. Object $A$ starts at $(0,0)$ and each of its steps is either right or up, both equally likely. Object $B$ starts at $(5,7)$ and each of its steps is either to the left or down, both equally likely. Which of the following is closest to the probability that the objects meet?

$\mathrm{(A)} \ 0.10 \qquad \mathrm{(B)} \ 0.15 \qquad \mathrm{(C)} \ 0.20 \qquad \mathrm{(D)} \ 0.25 \qquad \mathrm{(E)} \ 0.30 \qquad$

Solution

If $A$ and $B$ meet, their paths connect $(0,0)$ and $(5,7).$ There are $\binom{12}{5}=792$ such paths, so the probability is $\frac{792}{2^{6}\cdot 2^{6}} \approx 0.20 \Rightarrow \boxed{C}$

See Also

2003 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png