Difference between revisions of "2006 AMC 12B Problems/Problem 23"
Heliootrope (talk | contribs) |
|||
Line 92: | Line 92: | ||
== See also == | == See also == | ||
{{AMC12 box|year=2006|ab=B|num-b=22|num-a=24}} | {{AMC12 box|year=2006|ab=B|num-b=22|num-a=24}} | ||
+ | {{MAA Notice}} |
Revision as of 09:47, 4 July 2013
Contents
[hide]Problem
Isosceles has a right angle at . Point is inside , such that , , and . Legs and have length $s=\sqrt{a+b\sqrt{2}{$ (Error compiling LaTeX. Unknown error_msg), where and are positive integers. What is ?
Solution
Using the Law of Cosines on , we have:
Using the Law of Cosines on , we have:
Now we use .
Note that we know that we want the solution with since we know that . Thus, .
Solution 2
Rotate triangle 90 degrees counterclockwise about so that the image of rests on . Now let the image of be . Note that , meaning triangle is right isosceles, and . Then . Now because and , we observe that , by the Pythagorean Theorem on . Now we have that . So we take the cosine of the second equality, using that fact that , to get . Finally, we use the fact that and use the Law of Cosines on triangle to arrive at the value of .
Or notice that since and , we have , and Law of Cosines on triangle gives the value of .
See also
2006 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 22 |
Followed by Problem 24 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.