Difference between revisions of "2010 AMC 10A Problems/Problem 22"
m (→See Also) |
|||
Line 13: | Line 13: | ||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2010|ab=A|num-b=21|num-a=23}} | {{AMC10 box|year=2010|ab=A|num-b=21|num-a=23}} | ||
+ | {{MAA Notice}} |
Revision as of 10:59, 4 July 2013
Contents
[hide]Problem
Eight points are chosen on a circle, and chords are drawn connecting every pair of points. No three chords intersect in a single point inside the circle. How many triangles with all three vertices in the interior of the circle are created?
Solution
Solution 1
To choose a chord, we know that two points must be chosen. This implies that for three chords to create a triangle and not intersect at a single point, six points need to be chosen. Therefore, the answer is which is equivalent to 28,
Solution 2
We first figure out how many triangles can be created. This is done by choosing lines out of the , which is equivalent to . However, some of these triangles have vertices on the circle. Therefore, the answer choice must be less than . The only one that is so is .
See Also
2010 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.