Difference between revisions of "2001 AIME I Problems/Problem 9"

(solution and a totally misleading asymptote ... somebody please fix p,q,r if possible)
Line 31: Line 31:
  
 
[[Category:Intermediate Geometry Problems]]
 
[[Category:Intermediate Geometry Problems]]
 +
{{MAA Notice}}

Revision as of 18:52, 4 July 2013

Problem

In triangle $ABC$, $AB=13$, $BC=15$ and $CA=17$. Point $D$ is on $\overline{AB}$, $E$ is on $\overline{BC}$, and $F$ is on $\overline{CA}$. Let $AD=p\cdot AB$, $BE=q\cdot BC$, and $CF=r\cdot CA$, where $p$, $q$, and $r$ are positive and satisfy $p+q+r=2/3$ and $p^2+q^2+r^2=2/5$. The ratio of the area of triangle $DEF$ to the area of triangle $ABC$ can be written in the form $m/n$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Solution

[asy]  /* -- arbitrary values, I couldn't find nice values for pqr please replace if possible -- */  real p = 0.5, q = 0.1, r = 0.05;   /* -- arbitrary values, I couldn't find nice values for pqr please replace if possible -- */  pointpen = black; pathpen = linewidth(0.7) + black; pair A=(0,0),B=(13,0),C=IP(CR(A,17),CR(B,15)), D=A+p*(B-A), E=B+q*(C-B), F=C+r*(A-C); D(D(MP("A",A))--D(MP("B",B))--D(MP("C",C,N))--cycle); D(D(MP("D",D))--D(MP("E",E,NE))--D(MP("F",F,NW))--cycle); [/asy]

We let $[\ldots]$ denote area; then the desired value is

$\frac mn = \frac{[DEF]}{[ABC]} = \frac{[ABC] - [ADF] - [BDE] - [CEF]}{[ABC]}$

Using the formula for the area of a triangle $\frac{1}{2}ab\sin C$, we find that

$\frac{[ADF]}{[ABC]} = \frac{\frac 12 \cdot p \cdot AB \cdot (1-r) \cdot AC \cdot \sin \angle CAB}{\frac 12 \cdot AB \cdot AC \cdot \sin \angle CAB} = p(1-r)$

and similarly that $\frac{[BDE]}{[ABC]} = q(1-p)$ and $\frac{[CEF]}{[ABC]} = r(1-q)$. Thus, we wish to find

$\begin{align*}\frac{[DEF]}{[ABC]} &= 1 - \frac{[ADF]}{[ABC]} - \frac{[DEF]}{[BDE]} - \frac{[CEF]}{[ABC]} \ &= 1 - p(1-r) + q(1-p) + r(1-q)\ &= (pq + qr + rp) - (p + q + r) + 1$ (Error compiling LaTeX. Unknown error_msg)

We know that $p + q + r = \frac 23$, and also that $(p+q+r)^2 = p^2 + q^2 + r^2 + 2(pq + qr + rp) \Longleftrightarrow pq + qr + rp = \frac{\left(\frac 23\right)^2 - \frac 25}{2} = \frac{1}{45}$. Substituting, the answer is $\frac 1{45} - \frac 23 + 1 = \frac{16}{45}$, and $m+n = \boxed{061}$.

See also

2001 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png