Difference between revisions of "1950 AHSME Problems/Problem 45"

(Added a solution to the problem. Lots of these problems don't even have solution sections.)
Line 16: Line 16:
  
 
[[Category:Introductory Combinatorics Problems]]
 
[[Category:Introductory Combinatorics Problems]]
 +
{{MAA Notice}}

Revision as of 11:30, 5 July 2013

Problem

The number of diagonals that can be drawn in a polygon of 100 sides is:

$\textbf{(A)}\ 4850 \qquad \textbf{(B)}\ 4950\qquad \textbf{(C)}\ 9900 \qquad \textbf{(D)}\ 98 \qquad \textbf{(E)}\ 8800$

Solution

Each diagonal has its two endpoints as vertices of the 100-gon. Each pair of vertices determines exactly one diagonal. Therefore the answer should be $\binom{100}{2}=4950$. However this also counts the 100 sides of the polygon, so the actual answer is $4950-100=\boxed{\textbf{(A)}\ 4850 }$.

See Also

1950 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 44
Followed by
Problem 46
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png