Difference between revisions of "2012 AMC 12A Problems/Problem 23"
Armalite46 (talk | contribs) m (→Solution 1) |
(→Solution) |
||
Line 7: | Line 7: | ||
== Solution == | == Solution == | ||
− | === | + | <center><asy> |
+ | pair A=(0.1,0.7), C=(-0.1,-0.7), B=(-0.7,0.1), D=(0.7,-0.1), X=(1,0), W=(-1,0), Y=(0,1), Z=(0,-1); | ||
+ | draw (A--B--C--D--A); | ||
+ | draw(A--C); | ||
+ | draw(B--D); | ||
+ | draw(W--X); | ||
+ | draw(Y--Z); | ||
+ | label(" | ||
+ | label(" | ||
+ | label(" | ||
+ | label(" | ||
+ | </asy></center> | ||
+ | |||
The unit square's diagonal has a length of <math>\sqrt{0.2^2 + 1.4^2} = \sqrt{2}</math>. Because <math>S</math> square is not parallel to the axis, the two points must be adjacent. | The unit square's diagonal has a length of <math>\sqrt{0.2^2 + 1.4^2} = \sqrt{2}</math>. Because <math>S</math> square is not parallel to the axis, the two points must be adjacent. | ||
Revision as of 16:28, 28 December 2013
Problem
Let be the square one of whose diagonals has endpoints
and
. A point
is chosen uniformly at random over all pairs of real numbers
and
such that
and
. Let
be a translated copy of
centered at
. What is the probability that the square region determined by
contains exactly two points with integer coefficients in its interior?
Solution
![[asy] pair A=(0.1,0.7), C=(-0.1,-0.7), B=(-0.7,0.1), D=(0.7,-0.1), X=(1,0), W=(-1,0), Y=(0,1), Z=(0,-1); draw (A--B--C--D--A); draw(A--C); draw(B--D); draw(W--X); draw(Y--Z); label("\((0.1,0.7)\)",A,NE); label("\((-0.1,-0.7)\)",C,SW); label("\(x\)",X,NW); label("\(y\)",Y,NE); [/asy]](http://latex.artofproblemsolving.com/f/6/f/f6f0e5566a32958540f7896563dc7761f10e4078.png)
The unit square's diagonal has a length of . Because
square is not parallel to the axis, the two points must be adjacent.
Now consider the unit square with vertices
and
. Let us first consider only two vertices,
and
. We want to find the area of the region within
that the point
will create the translation of
,
such that it covers both
and
. By symmetry, there will be three equal regions that cover the other pairs of adjacent vertices.
For to contain the point
,
must be inside square
. Similarly, for
to contain the point
,
must be inside a translated square
with center at
, which we will call
. Therefore, the area we seek is Area
.
To calculate the area, we notice that Area Area
by symmetry. Let
. Let
be the midpoint of
, and
along the line
. Let
be the intersection of
and
within
, and
be the intersection of
and
outside
. Therefore, the area we seek is
Area
. Because
all have
coordinate
, they are collinear. Noting that the side length of
and
is
(as shown above), we also see that
, so
. If follows that
and
. Therefore, the area is
Area
.
Because there are three other regions in the unit square that we need to count, the total area of
within
such that
contains two adjacent lattice points is
.
By periodicity, this probability is the same for all and
. Therefore, the answer is
.
See Also
2012 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 22 |
Followed by Problem 24 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.