Difference between revisions of "2013 AMC 12B Problems/Problem 17"

(See also)
Line 11: Line 11:
 
<math> \text{(A) }2\qquad \text{ (B) }\frac{10}{3}\qquad \text{ (C) }4 \qquad \text{ (D) }\frac{16}{3}\qquad \text{ (E) }\frac{20}{3} </math>
 
<math> \text{(A) }2\qquad \text{ (B) }\frac{10}{3}\qquad \text{ (C) }4 \qquad \text{ (D) }\frac{16}{3}\qquad \text{ (E) }\frac{20}{3} </math>
  
==Solution==
+
==Solution 1==
 
<math>a+b= 2-c</math>. Now, by Cauchy-Schwarz, we have that <math>(a^2+b^2) \ge \frac{(2-c)^2}{2}</math>. Therefore, we have that <math>\frac{(2-c)^2}{2}+c^2 \le 12</math>. We then find the roots of <math>c</math> that satisfy equality and find the difference of the roots. This gives the answer, <math>\boxed{\textbf{(D)} \ \frac{16}{3}}</math>.
 
<math>a+b= 2-c</math>. Now, by Cauchy-Schwarz, we have that <math>(a^2+b^2) \ge \frac{(2-c)^2}{2}</math>. Therefore, we have that <math>\frac{(2-c)^2}{2}+c^2 \le 12</math>. We then find the roots of <math>c</math> that satisfy equality and find the difference of the roots. This gives the answer, <math>\boxed{\textbf{(D)} \ \frac{16}{3}}</math>.
 +
 +
==Solution 2==
 +
This is similar to the first solution but is far more intuitive. From the given, we have <cmath> a + b = 2 - c \\a^2 + b^2 = 12 - c^2 </cmath> This immediately suggests use of the Cauchy-Schwarz inequality. By Cauchy, we have <cmath> 2\,(a^2 + b^2) \geq (a + b)^2</cmath> Substitution of the above results and some algebra yields <cmath> 3c^2 - 4c - 20 \leq 0 </cmath> This quadratic inequality is easily solved, and it is seen that equality holds for <math>c = -2</math> and <math>c = \frac{10}{3}</math>.
 +
 +
The difference between these two values is  <math>\boxed{\textbf{(D)} \ \frac{16}{3}}</math>.
  
 
== See also ==
 
== See also ==

Revision as of 20:05, 24 January 2014

Problem

Let $a,b,$ and $c$ be real numbers such that

\[a+b+c=2, \text{ and}\] \[a^2+b^2+c^2=12\]

What is the difference between the maximum and minimum possible values of $c$?

$\text{(A) }2\qquad \text{ (B) }\frac{10}{3}\qquad \text{ (C) }4 \qquad \text{ (D) }\frac{16}{3}\qquad \text{ (E) }\frac{20}{3}$

Solution 1

$a+b= 2-c$. Now, by Cauchy-Schwarz, we have that $(a^2+b^2) \ge \frac{(2-c)^2}{2}$. Therefore, we have that $\frac{(2-c)^2}{2}+c^2 \le 12$. We then find the roots of $c$ that satisfy equality and find the difference of the roots. This gives the answer, $\boxed{\textbf{(D)} \ \frac{16}{3}}$.

Solution 2

This is similar to the first solution but is far more intuitive. From the given, we have \[a + b = 2 - c \\a^2 + b^2 = 12 - c^2\] This immediately suggests use of the Cauchy-Schwarz inequality. By Cauchy, we have \[2\,(a^2 + b^2) \geq (a + b)^2\] Substitution of the above results and some algebra yields \[3c^2 - 4c - 20 \leq 0\] This quadratic inequality is easily solved, and it is seen that equality holds for $c = -2$ and $c = \frac{10}{3}$.

The difference between these two values is $\boxed{\textbf{(D)} \ \frac{16}{3}}$.

See also

2013 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png