Difference between revisions of "2014 AMC 10A Problems/Problem 1"

m
(Solution)
Line 10: Line 10:
 
Sum the fractions over the common denominator: <math>\dfrac{1}{2}+\dfrac15+\dfrac1{10}=\dfrac{5+2+1}{10}=\dfrac45</math>
 
Sum the fractions over the common denominator: <math>\dfrac{1}{2}+\dfrac15+\dfrac1{10}=\dfrac{5+2+1}{10}=\dfrac45</math>
  
Now the answer is just some arithmetic: <math>10*\left(\dfrac45\right)^{-1}=10*\dfrac{5}{4}=\boxed{\textbf{(C)}\ \dfrac{25}2}</math>
+
Now the answer is just some arithmetic: <math>10\cdot\left(\dfrac45\right)^{-1}=10\cdot\dfrac{5}{4}=\boxed{\textbf{(C)}\ \dfrac{25}2}</math>
  
 
==See Also==
 
==See Also==

Revision as of 19:45, 7 February 2014

The following problem is from both the 2014 AMC 12A #1 and 2014 AMC 10A #1, so both problems redirect to this page.

Problem

What is $10 \cdot \left(\tfrac{1}{2} + \tfrac{1}{5} + \tfrac{1}{10}\right)^{-1}?$

$\textbf{(A)}\ 3\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ \frac{25}{2}\qquad\textbf{(D)}}\ \frac{170}{3}\qquad\textbf{(E)}\ 170$ (Error compiling LaTeX. Unknown error_msg)

Solution

Sum the fractions over the common denominator: $\dfrac{1}{2}+\dfrac15+\dfrac1{10}=\dfrac{5+2+1}{10}=\dfrac45$

Now the answer is just some arithmetic: $10\cdot\left(\dfrac45\right)^{-1}=10\cdot\dfrac{5}{4}=\boxed{\textbf{(C)}\ \dfrac{25}2}$

See Also

2014 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png