Difference between revisions of "1972 USAMO Problems/Problem 2"

(Solutions)
Line 21: Line 21:
  
 
===Solution 2===
 
===Solution 2===
 +
 
It's not hard to see that the four faces are congruent from SSS Congruence. Without loss of generality, assume that <math>AB\leq BC \leq CA</math>. Now assume, for the sake of contradiction, that each face is non-acute; that is, right or isosceles. Consider triangles <math>\triangle ABC</math> and <math>\triangle ABD</math>. They share side <math>AB</math>. Let <math>k</math> and <math>l</math> be the planes passing through <math>A</math> and <math>B</math>, respectively, that are perpendicular to side <math>AB</math>. We have that triangles <math>ABC</math> and <math>ABD</math> are non-acute, so <math>C</math> and <math>D</math> are not strictly between planes <math>k</math> and <math>l</math>. Therefore the length of <math>CD</math> is at least the distance between the planes, which is <math>AB</math>. However, if <math>CD=AB</math>, then the four points <math>A</math>, <math>B</math>, <math>C</math>, and <math>D</math> are coplanar, and the volume of <math>ABCD</math> would be zero. Therefore <math>CD>AB</math>. However, we were given that <math>CD=AB</math> in the problem, which leads to a contradiction. Therefore the faces of the tetrahedron must all be acute.
 
It's not hard to see that the four faces are congruent from SSS Congruence. Without loss of generality, assume that <math>AB\leq BC \leq CA</math>. Now assume, for the sake of contradiction, that each face is non-acute; that is, right or isosceles. Consider triangles <math>\triangle ABC</math> and <math>\triangle ABD</math>. They share side <math>AB</math>. Let <math>k</math> and <math>l</math> be the planes passing through <math>A</math> and <math>B</math>, respectively, that are perpendicular to side <math>AB</math>. We have that triangles <math>ABC</math> and <math>ABD</math> are non-acute, so <math>C</math> and <math>D</math> are not strictly between planes <math>k</math> and <math>l</math>. Therefore the length of <math>CD</math> is at least the distance between the planes, which is <math>AB</math>. However, if <math>CD=AB</math>, then the four points <math>A</math>, <math>B</math>, <math>C</math>, and <math>D</math> are coplanar, and the volume of <math>ABCD</math> would be zero. Therefore <math>CD>AB</math>. However, we were given that <math>CD=AB</math> in the problem, which leads to a contradiction. Therefore the faces of the tetrahedron must all be acute.
  
 +
===Solution 3===
  
 +
Let <math>\vec{a} = \overrightarrow{DA}</math>, <math>\vec{b} = \overrightarrow{DB}</math>, and <math>\vec{c} = \overrightarrow{DC}</math>. The conditions given translate to
 +
<cmath>\begin{align*}
 +
\vec{a}\cdot\vec{a} &= \vec{b}\cdot\vec{b} + \vec{c}\cdot\vec{c} - 2(\vec{b}\cdot\vec{c}) \
 +
\vec{b}\cdot\vec{b} &= \vec{c}\cdot\vec{c} + \vec{a}\cdot\vec{a} - 2(\vec{c}\cdot\vec{a}) \
 +
\vec{c}\cdot\vec{c} &= \vec{a}\cdot\vec{a} + \vec{b}\cdot\vec{b} - 2(\vec{a}\cdot\vec{b})
 +
\end{align*}</cmath>
 +
We wish to show that <math>\vec{a}\cdot\vec{b}</math>, <math>\vec{b}\cdot\vec{c}</math>, and <math>\vec{c}\cdot\vec{a}</math> are all positive. WLOG, <math>\vec{a}\cdot\vec{a}\geq \vec{b}\cdot\vec{b}, \vec{c}\cdot\vec{c}</math>, so it immediately follows that <math>\vec{a}\cdot\vec{b}</math> and <math>\vec{a}\cdot\vec{c}</math> are positive. Adding all three equations,
 +
<cmath>\vec{a}\cdot\vec{a} + \vec{b}\cdot\vec{b} + \vec{c}\cdot\vec{c} = 2(\vec{a}\cdot\vec{b} + \vec{a}\cdot\vec{c} + \vec{b}\cdot\vec{c})</cmath>
 +
In addition,
 +
<cmath>\begin{align*}
 +
(\vec{a} - \vec{b} - \vec{c})\cdot(\vec{a} - \vec{b} - \vec{c})&\geq 0 \
 +
\vec{a}\cdot\vec{a} + \vec{b}\cdot\vec{b} + \vec{c}\cdot\vec{c}&\geq 2(\vec{a}\cdot\vec{b} + \vec{a}\cdot\vec{c} - \vec{b}\cdot\vec{c}) \
 +
2(\vec{a}\cdot\vec{b} + \vec{a}\cdot\vec{c} + \vec{b}\cdot\vec{c})&\geq 2(\vec{a}\cdot\vec{b} + \vec{a}\cdot\vec{c} - \vec{b}\cdot\vec{c}) \
 +
\vec{b}\cdot\vec{c}&\geq 0,
 +
\end{align*}</cmath>
 +
as desired.
  
 
{{alternate solutions}}
 
{{alternate solutions}}

Revision as of 21:50, 31 March 2014

Problem

A given tetrahedron $ABCD$ is isosceles, that is, $AB=CD, AC=BD, AD=BC$. Show that the faces of the tetrahedron are acute-angled triangles.

Solutions

Solution 1

Suppose $\triangle ABD$ is fixed. By the equality conditions, it follows that the maximal possible value of $BC$ occurs when the four vertices are coplanar, with $C$ on the opposite side of $\overline{AD}$ as $B$. In this case, the tetrahedron is not actually a tetrahedron, so this maximum isn't actually attainable.

For the sake of contradiction, suppose $\angle ABD$ is non-acute. Then, $(AD)^2\geq (AB)^2+(BD)^2$. In our optimal case noted above, $ACDB$ is a parallelogram, so \begin{align*} 2(BD)^2 + 2(AB)^2 &= (AD)^2 + (CB)^2 \\ &= 2(AD)^2 \\ &\geq 2(BD)^2+2(AB)^2.  \end{align*} However, as stated, equality cannot be attained, so we get our desired contradiction.

Solution 2

It's not hard to see that the four faces are congruent from SSS Congruence. Without loss of generality, assume that $AB\leq BC \leq CA$. Now assume, for the sake of contradiction, that each face is non-acute; that is, right or isosceles. Consider triangles $\triangle ABC$ and $\triangle ABD$. They share side $AB$. Let $k$ and $l$ be the planes passing through $A$ and $B$, respectively, that are perpendicular to side $AB$. We have that triangles $ABC$ and $ABD$ are non-acute, so $C$ and $D$ are not strictly between planes $k$ and $l$. Therefore the length of $CD$ is at least the distance between the planes, which is $AB$. However, if $CD=AB$, then the four points $A$, $B$, $C$, and $D$ are coplanar, and the volume of $ABCD$ would be zero. Therefore $CD>AB$. However, we were given that $CD=AB$ in the problem, which leads to a contradiction. Therefore the faces of the tetrahedron must all be acute.

Solution 3

Let $\vec{a} = \overrightarrow{DA}$, $\vec{b} = \overrightarrow{DB}$, and $\vec{c} = \overrightarrow{DC}$. The conditions given translate to \begin{align*} \vec{a}\cdot\vec{a} &= \vec{b}\cdot\vec{b} + \vec{c}\cdot\vec{c} - 2(\vec{b}\cdot\vec{c}) \\ \vec{b}\cdot\vec{b} &= \vec{c}\cdot\vec{c} + \vec{a}\cdot\vec{a} - 2(\vec{c}\cdot\vec{a}) \\ \vec{c}\cdot\vec{c} &= \vec{a}\cdot\vec{a} + \vec{b}\cdot\vec{b} - 2(\vec{a}\cdot\vec{b}) \end{align*} We wish to show that $\vec{a}\cdot\vec{b}$, $\vec{b}\cdot\vec{c}$, and $\vec{c}\cdot\vec{a}$ are all positive. WLOG, $\vec{a}\cdot\vec{a}\geq \vec{b}\cdot\vec{b}, \vec{c}\cdot\vec{c}$, so it immediately follows that $\vec{a}\cdot\vec{b}$ and $\vec{a}\cdot\vec{c}$ are positive. Adding all three equations, \[\vec{a}\cdot\vec{a} + \vec{b}\cdot\vec{b} + \vec{c}\cdot\vec{c} = 2(\vec{a}\cdot\vec{b} + \vec{a}\cdot\vec{c} + \vec{b}\cdot\vec{c})\] In addition, \begin{align*} (\vec{a} - \vec{b} - \vec{c})\cdot(\vec{a} - \vec{b} - \vec{c})&\geq 0 \\ \vec{a}\cdot\vec{a} + \vec{b}\cdot\vec{b} + \vec{c}\cdot\vec{c}&\geq 2(\vec{a}\cdot\vec{b} + \vec{a}\cdot\vec{c} - \vec{b}\cdot\vec{c}) \\ 2(\vec{a}\cdot\vec{b} + \vec{a}\cdot\vec{c} + \vec{b}\cdot\vec{c})&\geq 2(\vec{a}\cdot\vec{b} + \vec{a}\cdot\vec{c} - \vec{b}\cdot\vec{c}) \\ \vec{b}\cdot\vec{c}&\geq 0, \end{align*} as desired.

Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.

See Also

1972 USAMO (ProblemsResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5
All USAMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png