Difference between revisions of "2001 AIME I Problems/Problem 11"
XXQw3rtyXx (talk | contribs) (→Solution) |
|||
Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== See also == | == See also == |
Revision as of 18:37, 26 April 2014
Problem
In a rectangular array of points, with 5 rows and columns, the points are numbered consecutively from left to right beginning with the top row. Thus the top row is numbered 1 through
the second row is numbered
through
and so forth. Five points,
and
are selected so that each
is in row
Let
be the number associated with
Now renumber the array consecutively from top to bottom, beginning with the first column. Let
be the number associated with
after the renumbering. It is found that
and
Find the smallest possible value of
Solution
See also
2001 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.