Difference between revisions of "2000 AIME I Problems/Problem 6"
(→Solution) |
(→Solution) |
||
Line 18: | Line 18: | ||
Since <math>y>x</math>, it follows that each ordered pair <math>(x,y) = (n^2, (n+2)^2)</math> satisfies this equation. The minimum value of <math>x</math> is <math>1</math> and the maximum value of <math>y = 999^2</math> which would make <math>x = 997^2</math>. Thus <math>x</math> can be any of the squares between <math>1</math> and <math>997^2</math> inclusive and the answer is <math>\boxed{997}</math>. | Since <math>y>x</math>, it follows that each ordered pair <math>(x,y) = (n^2, (n+2)^2)</math> satisfies this equation. The minimum value of <math>x</math> is <math>1</math> and the maximum value of <math>y = 999^2</math> which would make <math>x = 997^2</math>. Thus <math>x</math> can be any of the squares between <math>1</math> and <math>997^2</math> inclusive and the answer is <math>\boxed{997}</math>. | ||
--> | --> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
=== Solution 2 === | === Solution 2 === | ||
Line 38: | Line 47: | ||
− | We can count even and odd pairs separately to make things easier: | + | We can count even and odd pairs separately to make things easier*: |
Line 48: | Line 57: | ||
This makes 499 odd pairs and 498 even pairs, for a total of <math>\boxed{997}</math> pairs. | This makes 499 odd pairs and 498 even pairs, for a total of <math>\boxed{997}</math> pairs. | ||
+ | |||
+ | *Note: We are counting the pairs for the values of <math>a</math> and <math>b</math>, which, when squared, translate to the pairs of <math>(x,y)</math> we are trying to find. | ||
== See also == | == See also == |
Revision as of 23:37, 14 May 2014
Contents
[hide]Problem
For how many ordered pairs of integers is it true that and that the arithmetic mean of and is exactly more than the geometric mean of and ?
Solution
Solution 1
Because , we only consider .
For simplicity, we can count how many valid pairs of that satisfy our equation.
The maximum that can be is because must be an integer (this is because , an integer). Then , and we continue this downward until , in which case . The number of pairs of , and so is then .
Solution 2
Let = and =
Then
This makes counting a lot easier since now we just have to find all pairs that differ by 2.
Because , then we can use all positive integers less than 1000 for and .
Without loss of generality, let's say .
We can count even and odd pairs separately to make things easier*:
Odd:
Even:
This makes 499 odd pairs and 498 even pairs, for a total of pairs.
- Note: We are counting the pairs for the values of and , which, when squared, translate to the pairs of we are trying to find.
See also
2000 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.