Difference between revisions of "2011 AMC 10B Problems/Problem 9"
(→Problem) |
|||
Line 27: | Line 27: | ||
<math> \textbf{(A)}\ \frac{4}{3} \qquad\textbf{(B)}\ \sqrt{5} \qquad\textbf{(C)}\ \frac{9}{4} \qquad\textbf{(D)}\ \frac{4\sqrt{3}}{3} \qquad\textbf{(E)}\ \frac{5}{2} </math> | <math> \textbf{(A)}\ \frac{4}{3} \qquad\textbf{(B)}\ \sqrt{5} \qquad\textbf{(C)}\ \frac{9}{4} \qquad\textbf{(D)}\ \frac{4\sqrt{3}}{3} \qquad\textbf{(E)}\ \frac{5}{2} </math> | ||
+ | [[Category: Introductory Geometry Problems]] | ||
== Solution == | == Solution == |
Revision as of 10:43, 13 August 2014
Problem
The area of is one third of the area of . Segment is perpendicular to segment . What is ?
Solution
by AA Similarity. Therefore . Find the areas of the triangles. The area of is one third of the area of .
See Also
2011 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.